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Abstract

The pursuit of understanding the mysterious dark matter is one of the challenges

facing the modern physics community. There are compelling reasons to believe

that the majority of our universe is of a form which does not interact electromag-

netically or strongly, but does interact through the weak force and gravitationally.

There have been, and are currently, many experiments designed to look for a sign

of this ghostly matter. There has been a wealth of literature published on the

possible nature of dark matter, and we have come a long way in placing limits on

what its qualities must be.

The physical evidence in the cosmos suggests that each galaxy is permeated by

a spherical dark matter halo which, on average, contains about five times more

matter than the stars and gas. While this concentration does vary from galaxy

to galaxy, observations at the largest scales indicate that dark matter makes up

84% of the matter density in the universe, with the remaining 16% consisting

of ordinary matter made of protons and neutrons. Furthermore, a combination

of a body of theories, simulations, and physical measurements suggest that the

dark matter is mostly cold, and interacts only very rarely with normal matter.

Simulations of galaxy formation indicate that the dark matter halo is not co-

rotating with the stars and gas in the galactic disk. This suggest that as the solar

system moves through the galaxy, it passes through the cloud of dark matter,

creating a “wind”-like effect observable from Earth.

If observed, this wind would be very strong evidence of the dark matter’s existence.

To look for it, we need to find a way to spot the very rare interactions between

the dark matter and normal matter. To this end, the DRIFT (Directional Recoil

Information From Tracks) collaboration has developed a low pressure gas detector

capable of tracking the recoils of gas nuclei which are struck by the dark matter

particles in the theorized wind.

However, because of the very low predicted interaction rate of the dark matter, and

the number of more physically familiar ways that gas particles may be caused to

recoil, it is of utmost importance that we are able to determine in which direction

the gas particles are recoiling with very high confidence. In this thesis we present a

new algorithm for determining the direction of nuclear recoil tracks taken in CCD

images from a prototype dark matter detector. We compare the new algorithm
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to the current method of determining the directionality of nuclear recoils, and

investigate methods for improving our measures of confidence in recoil directions.

Finally, we present results from applying both algorithms to both simulations

and data taken from the detector. These results indicate an improvement of the

new algorithm over the old algorithm, and the new algorithm presents a new

parameter which we found was correlated with the likelihood of determining the

correct nuclear recoil direction.
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Chapter 1

Introduction, Motivation, and N.

Phan’s Detector

In this thesis we will be discussing techniques for measuring the direction of nuclear

recoil tracks in a low pressure gas detector imaged with a low noise, high sensitivity

CCD (charge coupled device). The CCD camera used in this detector is of scientific

grade, described in section 1.3.

We will analyze tracks created by recoiling atoms in the gas detector to determine

their initial directions. Finding methods for determining the directions is of great

interest to directional dark matter searches.

1.1 A History of Dark Matter

Over the course of the last century, astronomers investigating galaxies have de-

termined that they seem to have far more matter than contained in stars and

gas. Normal (baryonic) matter reflects and produces light by interacting with the

electromagnetic force. Matter also interacts with the gravitational force; all mat-

ter attracts all other matter. When astronomers look at other galaxies, they can

observe the matter which interacts with light, and they can observe how gravity

is interacting with the matter that they can see. In the observations, this has

led to a discrepancy, as there appears to be a larger gravitational effect than can

be explained by the amount of normal matter that can be observed. This was

first discovered by F. Zwicky in 1933. Zwicky used the virial theorem to calculate

1



Ch. 1: Introduction, Motivation, and N. Phan’s Detector 2

the approximate average velocities of matter in the Coma cluster. His calculation

based on the amount of luminous (normal) matter resulted in an average velocity

of 80 km/s. The actual measurements of the cluster resulted in velocities over

1000 km/s. His calculation indicated that if the galaxies were virialized, there

needed to be a matter density 400 times greater than what was observed in order

to explain the measured velocities [1].

The astronomical community has since drastically improved the ability to make

precise measurements of phenomena across the universe. These measurements

allow astronomers to explore key time frames in the early stages of the universe.

We know today that in the early universe, in a period referred to as the Epoch

of Recombination, the ordinary matter went through a phase transition consisting

of a plasma of protons, electrons and photons, to neutral hydrogen and photons.

After this epoch, when the universe was ≈ 300,000 years old, the hydrogen was

largely transparent to most wavelengths of light, and, because of this, existing

photons ceased interacting with the atoms. The universe continued to undergo

both cooling and expansion, and these photons became redshifted and cooled to

2.7 Kelvin and are now observed as the Cosmic Microwave Background (CMB).

The Planck Collaboration has conducted an extensive study of the CMB with the

five year Planck satellite mission and is able to provide measurements of many

cosmic parameters. The collaboration reports the current matter in the universe

is approximately 84% dark matter, while normal matter is the remaining 16% [2].

Furthermore, the Planck measurements are in strong agreement with other in-

dependent methods, such as gravitational lensing, and measurements of galactic

rotation curves, suggesting cold, massive, collisionless dark matter. The foremost

hypothesis is that dark matter consists of a new fundamental particle created in

some early state of the universe’s development [3].

This type of matter does not interact electromagnetically, and evidence from grav-

itational lensing and measuring the speeds of rotating galaxies indicates that the

dark matter is distributed spherically throughout the galaxy [4]. Given its distri-

bution on the galactic scale, and if it is a new fundamental particle, its features

may resemble a heavy neutrino.

There is strong theoretical motivation for believing that the mysterious dark mat-

ter interacts through the weak force as well as gravitationally. One of the leading

candidates is the Weakly Interacting Massive Particle, called a WIMP. If this
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theorized form of dark matter does interact through the weak force, then it can

couple with baryonic matter, which implies we may be able to observe its inter-

action. Many collaborations across the world are working to directly detect the

dark matter particles that pass through the solar system. There are Earth-based

laboratories with specially designed detectors searching for the rare interactions

between these particles and normal matter. Much of the work being done relies

on constraints on the nature of the dark matter obtained from astronomical and

particle physics.

Current estimates of the properties of the distributed dark matter are based on

simulations and kinematics of stars in our galaxy. These indicate that the dark

matter particles can be described as a non-interacting gas which has a velocity

distribution which is approximately Maxwellian. It is theorized to have an RMS

velocity of ≈ 230 km/s, which cuts off at an escape velocity of ≈ 600 km/s.

Furthermore, it has a density (ρ) in the range 0.3 ≤ ρ ≤ 0.7 GeV/c2· cm3 [5].

1.2 Directionality of Nuclear Recoils - A Signa-

ture for Dark Matter

As we have described above, our galaxy is expected to have dark matter distributed

approximately spherically throughout a large volume much larger than the disk

containing the stars and gas. This dark matter is not expected to be co-rotating

with the galactic disk of stars and gas, and because of this the baryonic matter in

the disk would see a “wind” of dark matter in the local rest frame. For our solar

system, the Sun’s velocity (≈ 230 km/s [5]) is directed toward the constellation

Cygnus, and the wind appears to emanate from there (figure 1.1). This wind

results in two different expected signatures on Earth, but here we only describe

the one which is the premise of this work.

The direction of Cygnus circles across the northern sky over a 24 hour period

due to Earth’s rotation. The WIMPs are expected to produce elastic nuclear

recoils in the gas volume, and the direction of these recoils is further expected to

be correlated with the direction of the WIMP wind relative to the Earth. This

anisotropy in the lab frame would appear to change direction as the Earth rotates

about its axis, resulting in a sidereal modulation of the signal. This is illustrated

in figure 1.2. The background events (lab-based or those of solar origin) which can
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cause nuclear recoils are expected to have very different angular distributions, none

of which should be directed from Cygnus. Therefore, this is why this directional

signature, if its ever seen, is considered “smoking gun” evidence for dark matter.

Figure 1.1: The Sun’s mo-
tion and the Earth’s plane of
rotation. Image obtained from
[6]. (The velocity measure here
is out of date. The most
recent measurements suggest

230 km/s [5])

Figure 1.2: The observed di-
rection of WIMP induced re-
coils (in red) on Earth at two
times of day. Image obtained

from [6].

The challenges for seeing this signature are great, however. We know that dark

matter interacts very rarely, conservatively on the order of an event per year per

kilogram [7].

In addition, it is extremely challenging to measure the direction of the nuclear

recoils produced by a WIMP. For a given track in the detector, there are two

components of the track, its axial direction and its skewness. Determining the

axial direction of the event is a challenge, depending on the event’s energy and

orientation in the detector. However, even the capability to specify the axis still

leaves an ambiguity as to the direction, was it traveling “forward” or “backward”

along the axis? There has been a large amount of work investigating how many

events will be needed to rule out an isotropic distribution of nuclear recoil events.

If all we have is the axial direction of events, it takes on the order of a few hundred

events to rule out the isotropy [3]. However, if we can specify the head and tail

of the event and break the ambiguity on the axial direction, we can reduce the

number of events needed by an order of magnitude [8]. Because of the very low

event rate expected for dark matter, it is to the greatest advantage to reduce the

number of events needed to confidently see the anisotropy [3].
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1.3 Nguyen Phan’s Nuclear Recoil Detector

University of New Mexico PhD candidate Nguyen Phan has developed a low pres-

sure time projection chamber (TPC) operated with 100 Torr carbon tetrafluoride

(CF4) gas and read-out with a CCD camera. The detector consists of a cylin-

drical aluminum vacuum vessel which is 16 cm in height and 29 cm in diameter,

photographed in figure 1.4.

In figure 1.3, we show a graphically reproduced representation of the interior of the

vessel which houses an anode wire grid, a cathode mesh, and three CERN GEMs

(gas electron multipliers). The GEMs are 7 cm x 7 cm and are made from a 50

µm kapton foil that is cladded on both sides by copper and perforated with 50 µm

holes on a 140 µm pitch. Outside the vessel, a mount holds a FLI back-illuminated

CCD camera (13 µm pixels at 1024 x 1024 pixels) and 50 mm F1.2 Nikon lens

looking down onto the vessel and focused on the surface of GEM 3.

Energetic particles in the gas produce ionization along the length of their track,

freeing electrons from the molecules in the gas. These are then caused by the

electric field to drift toward the anode and pass through the holes in the GEM.

Inside the holes, the electrons are accelerated by a much stronger electric field,

and reach an energy high enough to ionize the neutral gas, releasing secondary

electrons. These additional electrons drift into GEMs 2 and 3 which facilitate

further amplification of the ionization. With these three stages of GEMs, a gas

gain of over 105 is achieved. In other words, for each electron which enters GEM

1, 105 electrons exit GEM 3. In addition to creating electrons in the GEM holes,

scintillation light is also produced. This light is imaged by the CCD camera and

lens outside the vacuum vessel and provides the two dimensional image of the

track.

We measure energy by the intensity of the images produced by the detector. This

energy is only a result from the electrons which were liberated by the recoiling

atomic nuclei. The CCD camera captures intensity in units of ADU’s (analog

to digital units). We perform a calibration of the camera images by producing

ionization events of known energy. The energy deposited by the event into ioniza-

tion is measured in keVee (keV “electron-equivalent”). This keVee unit represents

the required energy of an electronic recoil event to produce an identical amount

of observed ionization. However, this ionization energy does not represent the

full energy which is deposited into the gas by the recoiling atomic nucleus. This
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Figure 1.3: A cross sectional view of the internal working of the detector (not
to scale) [9].

nucleus, unlike electrons, also deposits energy in the form of heat and phonons.

The full recoil event energy is described in units of keVr (this specifies the initial

nuclear recoil kinetic energy and distinguishes this energy from keVee), and we

can convert from keVee to keVr through the use of a quenching factor, which is

given by theoretical calculation [10].

The following chapters in this thesis are devoted to finding a method of assigning

head-tail directionality to the nuclear recoil events captured by this detector. In

doing so, we hope to provide a method for requiring minimal events in order to

ultimately rule out isotropy in the search for galactic dark matter.
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Figure 1.4: A photo of the detector [9].



Chapter 2

Univariate and Multivariate

Statistical Moments

In the majority of the images taken by the detector, it is very difficult to determine

by eye the direction of an individual nuclear recoil track. In order to extract the

direction we will utilize a group of expressions, called moments, from statistics.

These moments allow us to determine the mathematical characteristics of a set

of data. We will investigate what we can learn from these moments and how we

might apply them to our tracks.

2.1 Univariate Statistical Moments

The following discussion utilizes the moment definitions described in the paper

“Visual Pattern Recognition by Moment Invariants” by M.K. Hu [11].

2.1.1 Definitions

Moments are used in statistics and physics to characterize the properties of a given

mathematical object. Each moment is specified by its “order.” For any number

of dimensions, the zeroth moment is simply the total sum of the distribution. For

some set of numbers, it is just the sum of all the numbers in the set. If the set

describes, for example, the distribution of the mass of an object, then the zeroth

order moment is the total mass of the object.

8
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The first order moment is also easy to imagine and familiar. It is the average

value of some set of numbers. In one dimension, assuming all the values have

equal weight (we will return to weighting soon) we can find the first moment, also

known as the mean, by summing all the values in our set and then dividing by

the total number of objects we added together. For example, the zeroth moment

of the set consisting of S = {1, 2, 3, 4, 5, 6} is 21, and the first moment is 3.5.

We can also use the mean to find an average location of a set of numbers. Imagine

that we have a set of numbers, F = {10, 11, 12, 13, 14}. We can assign an index to

each member of the set. We can say that F1 = 10 or that F4 = 13. Now imagine

that we summed over all of the values and then divided by the total number of

values that we summed over. We would get 10+11+12+13+14
5

= 12. That is the

average value of the elements of the set. Suppose instead that we wanted to know

the average value of the index. Consider the figure 2.1. We can see that if that

picture were actually a picture of a piece of wood, then it would be heavier on one

side than on the other. This means that one side is more weighted than the other.

We can imagine trying to balance it on a point, and the point would need to be

more to the right than the lengthwise center of the plot. We can find where that

location is by examining the weighted first moment with respect to the indices.

Instead of summing over just the set values, we will sum over the product of the

index and the value of the set element at that index. This utilizes the set values

themselves as weights, to judge how “strongly” a given index contributes to the

sum. We will then normalize the resulting sum by the total “weight” of the set,

or the sum of just the elements. Earlier we called this sum the zeroth moment.

Using conventional mathematical notation, and calling the “nth” order moment

Mn we have for the first two moments in our example:

M0 = Σ5
i=1Fi = 50

M1 =
1

M0

Σ5
i=1i · Fi = 3.167

(2.1)

What we have found with M1 in 2.1 is that the weighted average index location

of the data is at location 3.167. This can be visually verified by inspecting the

image, and noticing that the point which splits the area in half is roughly between

3 and 4 by eye. What we have done is chosen the sequence index as our variable

of interest and found its weighted average, using the set element at each index as

a respective weight.



Ch. 2: Univariate and Multivariate Statistical Moments 10

Figure 2.1: Plot of the example set F , the x-axis is the index of the set item.
The y-axis is the set item itself.

More generally, if we have some density function ρ, which describes the intensity

of some scalar value as a function of x we can find the first two moments as

M0 =

∫
x

ρ(x)dx (2.2)

M1 =
1

M0

∫
x

xρ(x)dx (2.3)

Discretely this becomes:

M0 = Σiρ(xi) (2.4)

M1 =
1

M0

Σixiρ(xi) (2.5)

In physics, ρ is commonly the mass density of some object. Imagine we had a

straight bar with some length and a mass density ρ(x). we would be able to find

its total mass by simply integrating ρ(x) over the length of the rod. We could find

the center of mass of the rod by finding M1, which represents the x-coordinate of

the center of mass.
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In this paper, we will denote the mean value of a spatial variable (the first moment)

with an over-bar. The average x-value will be denoted x, average y-value as y.

The second moment, M2 by itself does not have a clearly intuitive meaning like

the zeroth and first moments. We will not be using the second moment in its

raw form, however, so we will simply present it mathematically here and discuss

a different version of its presentation momentarily.

M2 =
1

M0

∫
x

x2ρ(x)dx (2.6)

Or discretely:

M2 =
1

M0

Σix
2
i ρ(xi) (2.7)

In the above equations we are normalizing the non-zero moments with respect

to the zero moment M0. This is a normalization of convenience, as it allows us

to meaningfully compare the moments of different distributions. It is important

to note that not all authors utilize this normalization in their definitions of the

moments.

Finally, the third statistical moment is simply an extension of this higher powers

process, but again does not have a simple intuitive explanation. We will also not

be using this form of the third moment, but it is presented for completeness.

M3 =
1

M0

∫
x

x3ρ(x)dx (2.8)

Or discretely:

M3 =
1

M0

Σix
3
i ρ(xi) (2.9)
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When we inspect the expressions given in equations 2.1 - 2.9 it is apparent that

the values are dependent on our choice of coordinate system. However, these same

moments can be given a much stronger meaning if we center our coordinate system

on the mean value of the coordinate. We will therefore define a new set of moments

and discuss their meanings. Moments calculated relative to a coordinate system

centered on the mean value of the coordinate are called central moments, and will

be denoted µn where “n” is the order of the moment. The mean of the coordinate

is given by the first moment, so we have that x = M1.

µ2 =
1

M0

∫
x

(x− x)2ρ(x)dx (2.10)

µ3 =
1

M0

∫
x

(x− x)3ρ(x)dx (2.11)

And it is straightfoward to take the discrete case by taking the integral into a sum

and applying the appropriate summation indices to the x variable. Note that the

x is a constant, and does not get summed over.

Even more generally we have:

µn≥2 =
1

M0

∫
x

(x− x)nρ(x)dx (2.12)

Now that we have defined our single dimensional moments, we may inspect their

properties.

2.1.2 Univariate Moment Properties

Equation 2.12 provides us with moments equal to or higher than two. It is well

known in the community that these central moments are translationally invariant

[11].

The second order central moment (2.11) characterizes the width of the distribution

about its mean, and is called the variance of the distribution. The canonical

example of the variance is the width of a Gaussian or Normal distribution. The
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square root of the variance is also very important in mathematics and physics.

We denote the variance as σ2
x and its positive square root is called the standard

deviation of the distribution. The standard deviation is denoted by σx. In a

Normal distribution, approximately 68% of the total distribution lies within one

standard deviation of the mean value. This example is illustrated in figure 2.2.

Figure 2.2: An example Normal distribution. Note, µ here denotes the mean
of the set, and not the central moment. The size of σ characterizes the width

of the distribution. Image obtained from [12].

Figure 2.3: Negative Skew-
ness

Figure 2.4: Positive Skew-
ness

The third central moment (2.11) gives a measure of how asymmetric the distri-

bution is about its mean, and is referred to as the skewness. In one dimension, if

a distribution has a positive skewness, then it has a longer tail in the increasing

direction of the variable. If its skewness is negative, then the longer tail is in the

decreasing direction of the variable, relative to the mean (the first moment). See

figures 2.3 and 2.4 for examples of negative and positive skewness. It is important
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to note that if the skewness is identically zero this does not imply that the distri-

bution is symmetric. However, if the skewness is non-zero then the distribution is

certainly asymmetric.

We now have four ways of characterizing some one dimensional set of data. We

can describe the total size of the data by simply summing all of its parts; this gives

the zeroth moment. We can describe the center-of-mass of the data by summing

up all of the indices weighted by the data values themselves, and then dividing

by the total sum of the data, which is known as the mean or the first moment.

We can also find how extended the distribution is by inspecting the magnitude

of the square root of the second moment, and we can determine which side of a

distribution is more extended by looking at the sign on the third moment. Using

these ideas, we will extend the moments into two dimensions, and briefly discuss

higher dimensional generalizations.

2.2 Multivariate Statistical Moments

For this project, we are interested in inspecting the moments of images. Each

image contains a set of pixels and each pixel then has some corresponding inten-

sity. This intensity represents the value of the data point in the set, and the x-y

coordinates represent the data point’s location within the set.

In two dimensions, the zeroth and first order moments become:

M00 =

∫
y

∫
x

ρ(x, y)dxdy (2.13)

M10 =
1

M00

∫
y

∫
x

xρ(x, y)dxdy (2.14)

M01 =
1

M00

∫
y

∫
x

yρ(x, y)dxdy (2.15)

For orders greater than one, we will use the centralized moments. These moments

are now calculated relative to a coordinate system centered on the mean x value

(x) and the mean y value (y). It is conventional to refer to the order of the moment

as being order p+ q.
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µpq =
1

M00

∫
y

∫
x

(x− x)p(y − y)qρ(x, y)dxdy (2.16)

2.2.1 Two-Dimensional Second Order Moments

Given that p + q characterizes the order, and we can see if p is 2 and q is 0 then

we simply get the variance in the x variable. Similarly, if p is 0 and q is 2, then

we will get the variance in the y variable. If both p and q are 1, however, we

get an unfamiliar second order moment. This new quantity is referred to as the

covariance between x and y. We will label this covariance σ2
11. This value is a

measure of how much the data points along one axis change as we move along the

other axis. Namely, it is a measure of how the two variables are correlated with

one another.

Using these three variances, we can build a matrix referred to as the covariance

matrix of the distribution, below called D. It has the following form:

Cov(D) =

(
σ2
20 σ2

11

σ2
11 σ2

02

)
(2.17)

This is a symmetric matrix, and it can be diagonalized. In doing so, we compute

the eigenvectors and eigenvalues of the matrix. The eigenvectors characterize unit

vectors along a new orthogonal set of axes. These new axes represent a new set of

basis vectors in which there is no covariance between the variables. In other words,

if we transformed from our coordinate system to this new coordinate system given

by the eigenvectors of the covariance matrix, then we computed the covariance

matrix again in this new basis, we would find that all of the off-diagonal terms

would be zero.

Furthermore, the eigenvalues of the covariance matrix correspond to the variances

along the new axes specified by the eigenvectors. Because the variance charac-

terizes the width of the distribution through its square root, by diagonalizing the

matrix, we can characterize the geometric properties of the distribution. In two

dimensions, the eigenvalues of the covariance matrix are related to the physical

scale of the distribution in the directions of the corresponding eigenvectors. For

the sets of data we are interested in, we will be fitting an ellipse to the data. In
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two dimensions we will characterize the semi-major axis with the larger of the two

eigenvalues, and the semi-minor axis of the ellipse with the smaller eigenvalue.

We will call these eigenvalues λ1, λ2 and we will choose to name them such that

λ2 > λ1. Next, we will consider the quantity:
√

1− λ1
λ2

. For any set of data, we can

fit an ellipse to the data. The quantity we are considering specifies the eccentricity

of the ellipse. This uniquely determines the shape of the ellipse regardless of the

scaling of its semi-major and semi-minor axes.

Next we note that λ1,2 represents a variance along the direction of the correspond-

ing eigenvector, we can choose a scaling which captures a desired fraction of the

distribution.

Figure 2.5: An example distribution with a fitted ellipse. The scaling is to
2σ on both the semi-minor and semi-major axes. The green dot is the weighted

mean position. Red pixels are high intensity, blue is lower intensity.

2.2.2 Two-Dimensional Third Order Moments

There are four third order moments for a two dimensional distribution. They are

µ30, µ21, µ12, and µ03. Though there are four, we will only be looking at µ30 and

µ03 in this treatment.

Recall that in one dimension the third moment told us if there was an asymmetry

in the shape of the distribution about its mean. We can calculate the third moment

relative to the x-axis in a two dimensional distribution, and it will tell us the same

information about the distribution. We will now inspect figure 2.5. The data

set is two dimensional, but each pixel contains some intensity value. We use this

intensity value to map our image into three dimensions, and we can inspect the

image from multiple viewpoints in all three dimensions.
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Figure 2.6: A three dimensional look at the example distribution. This view
is along the semi-minor axis of the ellipse.

Figure 2.7: Image projected
into x− z plane.

Figure 2.8: Image projected
into the y − z plane.

We can see that there is an asymmetry in the distribution, as one section of it is

notably higher than another section. We can imagine rotating the image to look

down the positive y-axis, so that we have the positive x-axis to the right, and the

z-axis straight up. From this point of view (2.7) we can see that the image is

negatively skewed, the tail tapers to the negative x direction. We can perform the

same rotation and look down the positive x-axis, so that positive y is to our left,

and z is straight up. This is shown in figure 2.8, and we can see that it is also

negatively skewed, the tail is in the direction of negative y. Because of this, if we

calculate the moments µ30 and µ03 we expect them to both be negative.
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These are all the moments we will require for our treatment of the data collected

by Nguyen Phan’s detector.



Chapter 3

Extracting Properties of Nuclear

Recoil Tracks

As discussed in Chapter 1, the TPC imaging detector contains low pressure carbon

tetrafluoride (CF4) gas. When neutrons or WIMPs interact with the atoms in our

gas, the atoms can be freed from the molecular structure, shedding their orbital

electrons, and recoiling as bare nuclei. This nuclei then recoils in some direction

specified by the kinematics of the collision. The nuclei will then lose energy as

it travels to heating up the gas, causing scintillation in the gas, ionizing other

atoms, and knocking other fluorine or carbon nuclei out of the CF4 structure.

If the recoiling atomic nuclei ionize other atoms, this frees electrons from the

atoms and those electrons will drift through the electric field. They will come to

the GEMs and cause a cascade of electrons, which then produce light which is

captured by the CCD.

As the recoiling nuclei travels, we expect it to lose energy along its track, and in

the image this is manifested as a declining intensity along the track. This produces

a skewness along the direction of the track as the intensity lowers with length. If

the energy is quite large and the length of the track is sufficiently long, it is obvious

to see this drop in intensity with length, and we present an example in figure 3.2.

We refer to the direction of the track as being the direction along which the pixel

intensity is falling. In these images, red pixels correspond to high intensity, and

blue pixels correspond to low intensity.

Nguyen’s detector produces images whose pixels are 160 µm on a side. His detec-

tor has a point spread function which is approximately circularly Gaussian with a

19
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width of 350 µm. It has a gain of approximately 250 ADU/keVee. Finally we can

determine the noise in the images from the detector. Knowing these parameters

allows us to construct images which closely mimic the properties of the images

taken from the actual detector [9]. The CCD device used with the detector pro-

duces *.fits images. This is an image format type very common to CCD imaging

units, and is used extensively throughout astrophysics.

Figure 3.1: Image of a nu-
clear recoil track taken from
the detector. Pixels in ADUs.

Figure 3.2: A nuclear recoil
track in which it is easy to see
the direction. Pixels in ADUs.
The track’s direction is from

right to left.

3.1 The Algorithms For Identifying Track Direc-

tion

3.1.1 The Current Algorithm

In order to determine the direction of more ambiguous tracks like figure 3.1, we

currently use the third central moment in one dimension. First we isolate the

track on a zero background and calculate the covariance matrix of the track. We

then diagonalize it and find the semi-major axis of the ellipse which fits the track.

However, there is an ambiguity in the direction of the track, as the second moment

only gives us information about the physical extent of the track, not its asymmetric

features like the slope or direction of the track.

In order to find the direction of the track, we choose the vector along the semi-

major axis of the ellipse that the diagonalization gave us. We then use a method
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called the Radon Transform to project the track onto that vector direction of the

semi-major axis of the ellipse. We can then look at this new distribution which

contains the projected information of the track and calculate its skewness. If the

skewness is positive, then we claim that the vector we used in the Radon Transform

was the correct vector, otherwise we say that the vector needs to be flipped 180

degrees.

3.1.2 New Algorithm

We began by introducing the tool Source Extractor [13] to the analysis of the

nuclear recoil tracks. It is a widely used software package in the astronomical

community. It is capable of opening a fits image (this is short for a *.fits file

type), finding objects in the image, removing the background, and then creating

a new image with only the objects of interest and background removed. It also is

capable of outputting a file with information regarding the objects located within

the images.

On the images, we used Source Extractor to return the tracks in the images on

a flat zero background. Source Extractor’s output catalog was also configured to

specify the x− y coordinates of the corners of the box in the image containing the

object.

Source Extractor can be told to identify images by two sets of parameters. The

user can specify a threshold of how high above the standard deviation of the image

pixel distribution an individual pixel needs to be in order to be considered part of

an object. We can also specify how many pixels need to be above the threshold

and contiguous in order to constitute an object.

In our following analysis we will be applying Source Extractor to the images, and

then applying both the new algorithm and the original algorithm to the resulting

tracks extracted by Source Extractor. This will result in the results obtained from

the original algorithm being hybridized between N. Phan’s original work, and

the new skewness calculation presented below. We concluded the introduction of

Source Extractor to the original algorithm allowed a stronger comparison of the

moment calculations between the two algorithms without obscuring the differences

with the addition of this new tool.
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Source Extractor also provides basic noise removal and deblending of objects. We

used the default parameters for both of these functions in the software.

Figure 3.3: CCD image taken
from detector before applica-

tion of Source Extractor.

Figure 3.4: The extracted
objects/tracks on a zero back-
ground after the application of

Source Extractor.

Next, we take the tracks from the image that Source Extractor output and cal-

culate both the first four moments in x and y, and the covariance between x and

y. We next find the eigenvectors of the covariance matrix, and select the one

corresponding to the semi-major axis. We will call this vector a candidate direc-

tion. Note that this vector is produced by MATLAB’s eigenvalue and eigenvector

decomposition of the covariance matrix.

Once we have this candidate direction, we then create a new, two dimensional

quantity referred to as the skewness vector:

~S =
[µ30, µ03]

λ
3
2
2

. (3.1)

Where [µ30, µ03] are the skewness in x and the skewness in y respectively, and λ2 is

the value of the largest eigenvalue of the covariance matrix. We then normalize the

skewness vector to have a magnitude of unity, and take its vector inner product

with the candidate direction vector. If the angle calculated from this inner product

is greater than 90 degrees, then we take as the true direction of the track the

negative of the candidate direction, flipping it 180 degrees. If the angle is less

than 90 degrees, then we say the candidate direction is the correct direction. This

is demonstrated in figures 3.5 and 3.6
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Figure 3.5: An example of the new Algorithm. The blue vector is the can-
didate direction, the black vector is the skewness vector. The magnitudes are

equal and both 5 pixel lengths long for ease of viewing.

Figure 3.6: The blue vector is our decided direction for the track. The mag-
nitude of the vector is larger than unity for ease of viewing.

As a note, it may be useful to perform this same moment vector calculation with

respect to the basis in which the covariance matrix is diagonal. While this cal-

culational option is not exercised in this thesis, we hope to further explore this

technique in future research.

This new algorithm is distinct from the original algorithm as it allows for the
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comparison of two different projections of the nuclear recoil tracks. The original

algorithm only explores the projection of the track along the semi-major axis. In

the following sections we will explore the efficacy of this algorithm, and explore

what information the above quantities can give us regarding the imaged tracks.

3.2 Straight Simulated Nuclear Recoils

To test our new track direction finding algorithm, we simulate various sets of

tracks. We began by drawing tracks representing straight nuclear recoils, then we

moved to a more sophisticated method of drawing the recoils which allowed for

the deviation of the track from its initial direction.

3.2.1 Drawing Straight Tracks

In the first set of simulations, the goal was to draw the path of the recoiling fluorine

atom, assuming a perfectly straight recoil path, at various energies, path lengths,

and incident angles, and simulate the effects of the detector and imaging CCD

device. In drawing our straight tracks, we choose an energy in keVee and then

set the pixel intensity along the track utilizing the known conversion factor from

ADUs to keVee given previously. We are also able to adjust the slope of the track,

which corresponds to the change in energy with respect to a change along the track

length. It is important to note, that these simulations un-physically characterize

the tracks with a linearly decreasing ionization. Physical nuclear recoil tracks do

not display this, however the resulting image will have similar properties to the

images produced by the detector. For this reason, we will proceed with these

simulations, and then move to a more physically realistic simulation process in the

next section. We solve analytically for the continuous intensity as a function of

the total energy and the desired fraction in the first and second halves in appendix

A. We will refer to lengths in millimeters, and energy in keVee. We defined the

slope of our function by how much of the total energy (intensity) lies in the first

half of the track, and how much lies in the second half. We can now talk about the

percentage of total energy in the front and end parts of the track. This energy ratio

will be referred to as the front half “over” the end half, for example a track which

contains 65% of the total energy in the front half would have 35% of the energy
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in the end half. Furthermore, the front half of the track is always considered to

be the half which has the most energy.

Once we had our function, we needed to pixelate the line, and assign the pixels an

energy based on the value of the function as it passed through the pixel. We did

this by inspecting each pixel and determining if a line projected from the function

into the x-y plane would pass through the pixel. If it would, we then computed a

line integral through the pixel from the two points where it passed into the pixel

to where it passed out of the pixel. We then assigned the pixel’s value equal to

this line integral. The code for drawing the track can be found in appendix B.

Figure 3.7: A straight pixelated track at an angle of 30 degrees to the hori-
zontal. The direction of the track is in the direction of red pixels to blue pixels.

In figure 3.7, we have drawn the track in a finer space of pixels, where each pixel

side represents 16 µm. The intensity of the pixels is scaled so that there are 250

ADU/keVee.

We used this finer space of pixels so that we could more easily control the distribu-

tion of energy along the track. Because we have a continuous analytic function for

the energy along the track length, the finer we bin the pixels, the closer we come

to approximating that distribution. However, once we have visually represented

the deposited energy in our finer pixels space, we need to use it in our simulation

of the detector’s image properties.
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3.2.2 Applying the New Algorithm

We wanted to determine how accurately the skewness vector represents the direc-

tion of the track before we simulate the diffusion aspect of the detector. We found

that the skewness vector pointed into the hemispherical half of the ellipse with the

lower integrated intensity. (See figure 3.8)

Figure 3.8: The straight track in figure 3.7. The red vector is the direction of
the vector parallel to the semi-major axis which has the smallest angle to the

skewness vector. The green vector is the skewness vector.

The above track has an energy of 50 keVee, and a total length of one millimeter.

This length and energy was chosen for two reasons. First, 50 keVee on the order

of the expected deposited energy of a WIMP interaction [5]. Second, a 50 keVee

track is approximately one millimeter in length, measured from nuclear recoil data

taken by the detector described in chapter one. It contains 65 percent of its total

energy in the first half of its length, and 35 percent of its energy in the second half.

The skewness vector does not always lie along the track itself, but does lie within

about 20 degrees of the true track direction. The skewness projected along an

axis is related to the length of the track projected onto that axis. Because of this,

when the track is close to one axis, the measured skewness along the orthogonal

axis does not experience much change for small changes in the angle relative to

the parallel axis.

However, the semi-major axis of the best fit ellipse does capture the angle along

the track well, but is not able to tell us which portion of the track contains more
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intensity. In order to break this ambiguity between two antiparallel vectors along

the semi-major axis, we choose the vector whose angle relative to the skewness

vector is smallest.

We can see the effectiveness of this method by taking the example track above and

rotating it through 360 degrees. We will measure the angle of the skewness vector

relative to the positive x-axis, and we will measure the angle resulting from using

the skewness vector along with the the angle resulting from the use of the second

moment semi-major axis along with the skewness vector. The results of this are

shown in figure 3.9

Figure 3.9: Measured angles of the skewness vector and the track angle re-
sulting from the combined use of the skewness vector and the semi-major axis.
There is a periodicity in the angles. The angles are not measured above 360

degrees, and instead return to 0 at 360.

The strong agreement between the line produced by the blue diamonds and the

red line representing the angle at which the track was drawn indicates that this

combination of the two moments is a good candidate for further investigation.

Next we need to simulate the diffusion and pixelation of the track. We do this by

convolving the two dimensional track image with a Gaussian of the appropriate

width, 350µm, which corresponds to 21.875 pixels in the image. Once the track has

been convolved, we rebin the image using a bicubic interpolation into a pixel space

10 times smaller, so the new pixels are 160µm on a side. The bicubic interpolation

in this track-generation algorithm allows for the rebinning of the image into an
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image which is not necessarily scaled by an integer. This was chosen to maintain

the plasticity of the track generation scheme. This results in a coarser image.

Finally we need to add noise to the image to fully simulate the detector. To find

the appropriate noise profile to add, we selected 10 real images from the detector,

removed any objects from them, and inspected the mean value and standard de-

viation of the pixel values. We found that in the images, the pixels had a mean

value of zero, with a standard deviation of 10 ADU’s. It is important to note that

the images we are considering have already undergone a flat-fielding process by N.

Phan. The convolved, rebinned, and noise added image is shown in figure 3.10.

Figure 3.10: The example track after convolution, rebinning and noise.

3.2.3 Trials of Algorithms on Straight Tracks

After developing the above method for simulating straight nuclear recoil tracks, we

were able to simulate many nuclear recoil tracks and compile statistics regarding

the efficacy of the algorithms.

The parameters we varied were the length of the track, the head/tail energy ratio,

and the angle along which the slope decreased. We looked at tracks between 2 mm

and 0.2 mm in length, we looked at head/tail energy ratios of between 50/50 to

65/35 in integer steps in the numerator. (Each increasing step in the numerator is

accompanied by a decreasing step in the denominator.) For each combination of
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length and energy ratio we generated 7200 tracks. These tracks were drawn evenly

distributed across 360 degrees relative to the x-axis in the image, with 20 tracks

per angle. Furthermore, each track was placed at a randomly selected location in

each image, and each image had unique noise generated for it. We did not vary

the integrated energy along the track, and each had a 50 keVee total energy.

Because we knew the true direction of the track along which the intensity de-

creased, we were able to determine the fraction of the total number of events

which the algorithm correctly identified. Our experiment is interested in ruling

out an isotropy in the directionality of nuclear recoils. To this end, we will consider

a direction that our algorithm finds to be “correct” if it is within 90 degrees of

the true direction of the track. In other words, we are interested in determining

the correct directional hemisphere. Given this, we found that the new algorithm

performed as well, or better than, the original algorithm. In figures 3.11 - 3.14

we show plots, each of which has the fraction of total events which were correct

as the ordinate variable (y-axis). Because the number of combinations of track

length and energy ratio is so large we restrict our presentation to two samples of

each. First we inspect tracks across all skews holding the length constant at 1mm

tracks, and 0.5mm tracks. Then we hold the energy ratios constant at 60/40 and

53/47 and inspect tracks of all lengths between 0.2 and 1mm.

Figure 3.11: Fraction Cor-
rect as a function of front frac-
tional energy, holding length

constant.

Figure 3.12: Fraction Cor-
rect as a function of front frac-
tional energy, holding length

constant.

We can see from these figures that the new algorithm performs at least as well as

the original algorithm. It also provides improvement at lower track lengths and

more skewed distributions over the original algorithm.
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Figure 3.13: Fraction correct
as a function of track length,
holding front fractional energy

constant.

Figure 3.14: Fraction correct
as a function of track length,
holding front fractional energy

constant.

In our characterization of these tracks, we also discovered a correlation between

the number of correct tracks and the skewness vector’s magnitude. We chose a

specific track length and fractional energy and created a histogram of the measured

skewness magnitudes, distinguishing between tracks whose direction the algorithm

correctly and incorrectly identified. This histogram is shown in figure 3.15.

Figure 3.15: Number of correct and incorrect events as a function of the
skewness vector magnitude.

This plot is telling us that the larger the skewness magnitude, the more likely it is

that the algorithm calculated the track direction correctly. Given this, we possibly
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have a new method of discriminating against low quality or noisy tracks in the

real data.

3.3 Nuclear Recoil Tracks Simulated with SRIM

We next proceeded with our simulations by using a common software package in

nuclear physics called SRIM, which stands for The Stopping and Range of Ions in

Matter [14]. This toolbox allows for a much more physically realistic simulation

of the nuclear recoil tracks, including deviations (straggling) from the initial recoil

direction, and an intensity profile which does not decrease linearly along the track

length. Within SRIM there is a secondary toolbox called TRIM which allows

for the calculation of interactions between energetic ions being propelled into a

volume of matter. With this tool we can simulate a single fluorine ion as it travels

through a volume of CF4 gas. We can specify the particle’s initial kinetic energy

and its initial angle relative to the x-axis in the x-y imaging plane. In the software

package, we specified carbon tetrafluoride gas as the target for the fluorine ions.

We specified that the target is a gas, and we used the appropriate density for the

target, calculated using the ideal gas law from the known pressure in the real gas

chamber. This calculation resulted in a density of approximately 0.00047 g
cm3 for

CF4 gas at a pressure of 100 Torr.

We used the quickest mode of the TRIM simulation which only tracks the primary

fluorine ion as it passes through the gas. In this mode we do not calculate the

energy lost from the initial (primary) fluorine ion into secondary fluorine ions that

are freed from the the molecular structure of the gas. In the detector, neutrons

can also free carbon atoms resulting in nuclear recoil tracks. However, there are

approximately five fluorine nuclear recoils for each carbon nuclear recoil, so in the

interest of computation time we only simulated fluorine tracks.

TRIM can run thousands of ions projected into the target volume in a matter

of minutes. It outputs a text file with details about each ion’s path through the

target. The file contains the ion number, the kinetic energy of the ion at each step,

its x-y-z location coordinates at each step in angstroms, and how much energy was

lost due to electronic stopping at each step in eV per angstrom. It is important

to note that the tracks have a full three dimensional coordinate space during the

simulation, but are projected into the x-y plane during image creation.
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In order to produce an image of the track we must integrate the energy the ion

loses due to ionization over the length of the track and then bin that energy

appropriately. Energy is also lost to heat and scintillation, but the detector is

only sensitive to the loss in electronic stopping. The code which was used to

perform this task has been included in appendix B.

Once we had images of the tracks at the appropriate pixel scale of 16 µm per pixel

(figure 3.16), we were able to perform the same convolution, rebinning, and noise

addition that was performed for the straight tracks. The before and after results

are shown in figures 3.16 and 3.17.

Figure 3.16: A nuclear recoil
track as simulated by TRIM

package in SRIM.

Figure 3.17: The same track
after convolution, rebinning

and noise.

We performed simulations at 50 to 100 keVr incident ion kinetic energy, increasing

in steps of 10 keVr. For each energy, we simulated the tracks at incident angles

of 0, 30, 45, and 60 degrees relative to the x-axis in the imaging plane. For each

pair of energy and angle, we simulated 1000 unique tracks. This led to an overall

24,000 tracks for our simulation statistics.

We also took a subset of the same set of tracks and reflected them across the y-

axis to simulate tracks in the second quadrant, in order to determine any angular

dependence of the algorithm. We found a very small angular dependence arising

from the Source Extractor package. This resulted in approximately one percent of

the reflected tracks having a different direction identified than their mirrored but

otherwise identical counterparts in the first quadrant. Because there was almost

no change in the fraction correct as a function of quadrant, we restricted our

investigation to the first quadrant to save time.
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Furthermore, the results presented here will be over all of the tracks, independent

of the angle and the initial energy. We are not able to strongly discriminate

between events as a function of their track angle before our analysis in the real

data, so here the data is presented as though all events were taken from one real

data set.

3.3.1 Trials of Algorithms on SRIM Generated Tracks

The events we are interested in finding occur rarely, so we want to be able to

include as many of the events as possible, but in doing so we open ourselves to

more mischaracterized events. We want a method of including as many events as

possible, and having as high a probability correct as possible.

In the tracks generated by SRIM, there were two ways that we considered defining

the direction of the track. In one method we defined the track’s true direction as

the initial angle we told the software to generate; in the other, we applied the two

algorithms to the tracks before we convolved, rebinned and added noise. For both

methods, we determined that the algorithm calculated the correct direction if its

measured direction was within 90 degrees of the defined direction of the track.

In the second method of determining track direction, we were able to determine

how well the algorithms agreed with their own methods before and after convo-

lution, rebinning, and the addition of noise. We wanted to know: Did the new

algorithm agree with itself before and after more strongly than the original algo-

rithm agreed with its own results?

For the second method of determining the track direction, we applied both al-

gorithms to the tracks before convolution, rebinning, and adding noise. The al-

gorithms gave a direction to each track separately from one another. Then we

convolved, rebinned and added noise. We applied each algorithm to each track

separately and noted each algorithm’s calculated direction. Then we compared the

new algorithm’s calculated direction after the convolution, rebinning, and noise to

its calculated direction before convolution, rebinning and noise. We performed the

same set of steps for the original algorithm. We found that the two algorithms

applied to the data before and after agreed with their own results at the same

rate.
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However, using the first method, by defining the correct direction of the track to be

the initial direction input to the SRIM software, we did see a small improvement

in the new algorithm over the original algorithm. The fraction of correct events

as a function of measured energy in keVee for these two definitions are presented

in figures 3.18 and 3.19.

Figure 3.18: Correct defined
by applying the algorithms be-

fore convolution.

Figure 3.19: Correct defined
by the initial angle specified in

SRIM.

We also inspected the same skewness magnitude distribution, and how it related

to the number of events that were marked as correct or incorrect, using the defined

direction of the track to be what was input to the software. In this method we saw

the same correlation between the fraction of correct events and the magnitude of

the skewness vector. As the magnitude of the skewness vector grows, the propor-

tion of tracks whose direction were correctly measured increases. This is shown in

figure 3.20.

Although we have only made a slight improvement on the overall percentage of

correctly identified events, we have introduced a new parameter which can be used

to our advantage. We will discuss this advantage in the next section.

3.4 Methods for Excluding Poor Quality Events

Each of the tracks that were created with SRIM were convolved, rebinned, and

had noise added to fully simulate the effects of the detector. This results in each

track having a unique energy which is obtained by summing all of the pixels in the

track and then converting from ADU’s to keVee. The detector produces images

with approximately 250 ADU’s per keVee, so we can convert from our pixel values
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Figure 3.20: Number of correct and incorrect events as a function of the
skewness vector magnitude for SRIM simulated events.

to the energy in the track. Furthermore, each track also has some length along

its semi-major axis. We can calculate this length in pixels by looking at the value

of 2
√
λ2. This is the length of the semi-major axis in pixels. We then use the

relationship that one pixel is 0.160mm in length, and we can calculate the length

of each track. We produce a plot of each event’s energy versus its track length

3.21.

We are interested in finding events for which we are very confident that we de-

termined the directionality of the track correctly. To this end, we will divide the

distribution in figure 3.21 into thirds, producing figure 3.22. We will then inspect

the fraction of events in the top third that we got correct, the middle third, and

the bottom third. We expect there to be more events correct in the top third,

because this represents the tracks with the highest lengths given a specific energy.

These longer tracks represent the straightest nuclear recoils. The longest tracks

at a given energy may represent the highest quality events because they have the

most physical extent to carry information about the direction of the recoil.

We can get the best probability of our algorithm assigning the correct direction

to the track if we exclude all but the top third of events, because these events are

the straightest tracks. However, this involves disregarding 66% of events.
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Figure 3.21: A scatterplot of
each event’s energy-length or-

dered pair.

Figure 3.22: The same plot,
divided into thirds. The blue
seems smaller than the red and
green because the events are

more densely clustered.

Looking at our skewness magnitude distribution, we can see that we have a much

larger probability of getting the track direction correct if we only consider events

whose skew magnitude is above 0.1 (unitless). To this end, we inspected perform-

ing three cuts on the skewness magnitude, excluding events below 0.12, 0.1, and

0.07 respectively. In figures 3.23 and 3.24 we look at the fraction of correct events

as a function of those cuts. In figure 3.23 we also inspect how many events at each

energy bin and each skewness magnitude cut we actually included in our fraction

correct.

Figure 3.23: Top: The frac-
tion of events correct at a given
energy with three cuts exclud-
ing events below the listed
skewness magnitude. Bottom:
The fraction of events included
at each point in the top plot.

(Saxophone Plot)

Figure 3.24: The fraction
correct as a function of which
third of the length vs. energy
plot is being inspected. Each
third only includes 33 percent

of the events by definition.
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Here, we can see that the green line in the skewness cut, corresponding to a

skewness cut of 0.07, includes on average more than half of all of the events in

the analysis. It also produces a probability correct which is nearly equal to the

top thirds cut. The top third cut excludes 66% of the events. This skewness

magnitude parameter appears to give a method of selecting good quality events

which includes more of the total number of events. This will allow for a more

comprehensive analysis of the data taken from the detector.



Chapter 4

Application of the New

Algorithm to Real Data

There are many types of energetic events which can occur and leave tracks inside

the gas volume that our detector will image. We have electronic recoils, which

occur when an electrons move through the gas, producing ionization and light.

We have alpha particles (helium nuclei) which can pass through the gas, leaving

very large straight tracks through the gas (on the order of tens of centimeters,)

and finally we have fluorine and carbon nuclear recoils which produce the tracks in

which we are interested. If we inspect all of the images from our detector, and then

view the tracks on a length versus energy scatter plot, we can discriminate between

events. Electrons, being much lighter than nuclei, deposit much less energy per

length of travel. This leads the plot of track length versus deposited energy to

have two distinct classes of events.

If we want to apply the algorithms for real data, first we need to characterize

nuclear recoils due to fluorine and carbon nuclei. We can gather data to per-

form this characterization by placing a source of neutrons near the detector. The

neutrons produced by the source interact with the gas molecules in our fiducial

volume, causing nuclear recoils when the fluorine or carbon atoms are freed from

the molecular bonds. We acquire data during this process, and we can then pro-

duce a scatter plot of the length of the event versus the energy of the event. This

data is shown in figure 4.1.

There are two large bands of data points, one nearly vertical, and one with a

much more shallow slope. The more shallow band consists of the nuclear recoils

38
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in which we are interested. Furthermore, we are really only interested in events

below 200 keVee for two reasons. First, because higher than that it becomes easy

to discriminate the track direction, and both algorithms reach 100% accuracy.

Second, the rate at which WIMPs can deposit energy follows a falling exponential.

Therefore the rate of WIMP interactions which deposit higher than 200 keVee is

only a very small fraction of the total WIMP events. For this reason we are

interested in improving our sensitivity for energies below 200 keVee.

Figure 4.1: Scatter plot of
track length versus energy for
data taken from the detector.

Figure 4.2: The nuclear re-
coil tracks lie between the red

and green lines.

We will restrict ourselves to considering events which lie between the red and green

lines, and to the right of the blue line in figure 4.2.

4.1 Application of the New Algorithm to Events

in the Nuclear Recoil Band

As we investigated the application of the new algorithm to the real data, we came

across an interesting piece of information. On the length versus energy plot, we

plotted all events with a skewness magnitude of greater than 0.9 in red diamonds,

and all other events in black diamonds. We found that there were very few events

in the nuclear recoil band of skewness magnitude greater than 0.9. (Figure 4.3)

The number of events in the nuclear recoil band above 10 keVee and below 200

keVee was 4774, of those only 232 events had a skewness magnitude greater than

0.9. It is likely that this skewness magnitude exclusion in the nuclear recoil band
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Figure 4.3: Red events have a
skewness magnitude above 0.9.

Figure 4.4: Angular distribu-
tion for all events in the nuclear

recoil band.

is unique to this configuration of gases and pressures, but there may exist other

skewness magnitude exclusions like this in other gases and pressures.

We applied the algorithm to all tracks in the entire data set, and began by ex-

cluding tracks outside of the nuclear recoil band. We also excluded events whose

skewness magnitude was above 0.9, resulting in capturing approximately 95% of

the nuclear recoil band between 10 and 200 keVee. We then investigated the dis-

tribution of measured angles in the set, and we display that distribution as an

angular histogram in figure 4.4.

It is easy to see the asymmetry in the distribution of angles from the plot. We know

from the experimental setup that for this data set, the neutron source was oriented

in the direction of positive infinity along the x-axis, meaning that the neutrons

are traveling from right to left, relative to the image. Therefore the nuclear recoils

should have an asymmetry in the negative x direction. While we do see that in

the angular distribution here, we would like to tighten the distribution so that we

have relatively fewer events in the wrong direction, and relatively more events in

the correct direction. Morgan, Green, and Spooner have shown that characterizing

the nuclear recoil direction will reduce, by a factor of 10, the number of events

required to prove an anisotropic distribution of nuclear recoils. However, they

have also shown that a 70-80 percent likelihood of correct identification of initial

recoil direction is required to obtain this reduction in required events [8].

We will begin by first splitting the nuclear recoil band into thirds, as we did for the

simulated nuclear recoil tracks. We will define the correct direction of the track to

be in the direction of negative x. We will investigate the probability of finding the
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correct direction of the track as a function of which third of the band the track

is in. We will also inspect the skewness magnitude distribution to determine how

well it matches our SRIM simulated distribution. The distribution is shown in

figure 4.5.

Figure 4.5: Skew Magnitude distribution for the nuclear recoil band of real
data between 0 and 200 keVee.

Next we adjust the cuts on the skewness magnitude such that the least aggressive

cut included approximately half of events, and investigated the probability distri-

bution of getting the correct direction as a function of energy with those cuts. The

probability correct curves for both the thirds cut and the skewness magnitude cuts

are shown in 4.6 and 4.7. These plots fluctuate more than the equivalent plots in

the SRIM data because we have approximately one fifth of the number of events

to inspect.

Finally we will present the angular distribution resulting from selecting only events

above skew magnitude 0.1 (the green line in figure 4.6), only events in the top

third, top two thirds, and the distribution which results in selecting only events

with skew magnitude above 0.1 and which are in the top third of the nuclear recoil

band. These distributions are in figures 4.8 - 4.11.

Given these angular distributions, and the fractional correct plots, the new algo-

rithm’s skewness magnitude allows for the discrimination of lower quality events

while discarding fewer events than the previous method. We can achieve a tighter
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Figure 4.6: Top plot: Frac-
tion of events with correctly
identified directions above sev-
eral different skewness magni-
tudes. Bottom plot: the frac-
tion of included events at each

energy.

Figure 4.7: Fraction of events
with correctly identified direc-
tions in several cuts of the
length versus energy scatter

plot.

angular distribution with more events, and retain more events without sacrificing

our probability of measuring the correct direction of the track.

4.2 What’s Next?

Both the cuts along the thirds of the length-versus-energy plot and the skewness

are capable of excluding poor quality events from the analysis of the nuclear recoils.

We have two parameters which can be used to indicate how likely it is that the

direction indicated by the algorithm is correct. Ideally, in order to exclude as few

events as possible, we should next develop a method of weighting these parameters

together to create a new and dynamic method of estimating the likelihood of

correctly measured track direction.

There also may be other methods of finding the track direction. Given that the

detector has some known point spread function, it may be possible to deconvolve

the tracks in the images. In the future we would like to investigate the possibility

of applying algorithms developed for use by the astronomical community in the

deconvolution of stellar objects to our detector images.
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Figure 4.8: Angular distribu-
tion for events in the top third

of the nuclear recoil band.

Figure 4.9: Angular distri-
bution for events in the top
two thirds of the nuclear recoil

band.

Figure 4.10: Angular Distri-
bution for a skew magnitude

cut at 0.1.

Figure 4.11: Angular distri-
bution for skew magnitude cut

at 0.1 in the top third.

There exist other methods of analyzing images other than deconvolution and mo-

ments. In the image analysis community there has been work done in the de-

composition of images into a set of objects called shapelets. If it is possible to

decompose our images into their most strongly weighted shapelets, it may be pos-

sible to determine the asymmetries in the images. We may be able to use this

information to more robustly assign head/tail directionality to individual events.

As we further analyze these images, our goal is to push the threshold for deter-

mining the directionality of events to be as low as possible.



Appendix A

Mathematics for Drawing

Straight Tracks

In this appendix we will discuss the mathematics behind the drawing of straight

track, pixelated images. We will start off by assuming that the track has some

intensity value as a function of x and y in continuous space and we can map that

intensity value into the z variable. Next, for a given track we know its length in

the x-y plane, we know its total energy (intensity), and we know that we want

some fraction of the energy to be in one half, and the corresponding fraction in

the second half.

We will call the overall track length in the x-y plane b, we will call the total energy

E. If we want pE of the energy to be in the front half of the track, by definition

we must have E(1 − p) in the second half of the track. Using p as a variable

that describes the fraction of energy in the front half of the track, we can begin

to describe the situation mathematically. (Note: the front half of the track will

always be the half which has greater energy.)

In figure A.1 we can see a side view of a track in a continuous space. There are

two unknown quantities in the track, h and l, named because h is necessarily the

highest point on the track, and l is the lowest.

Using the relationship that E1 + E2 = E and that we know that E1 = pE and

E2 = E(1− p), we can solve for what the two heights, h and l must be. After an

application of geometry, we find the following:

44
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Figure A.1: Looking at a
straight track, on its side, in
continuous space. The total en-
ergy is E1+E2, and is repre-
sented by the total area in the

trapezoid.

Figure A.2: Looking down
on the same track in the x-y
plane. The track makes an an-

gle θ with the x-axis.

h =
2E

b(1 + 3−4p
4p−1

)

l =
h(3− 4p)

4p− 1

(A.1)

And the slope of the line connecting h and l is then just h−l
b

.

Next, we can note that there is a relationship between x and y, because we have

a straight line in the x-y plane that begins and ends at two points. Because it is

linear function, we will write y in terms of x and x in terms of y, as we will need

both.

y = tan θ(x− x0) + y0

x = cot θ(y − y0) + x0
(A.2)

Next, we know that the height of the function, z, is linearly related to the position

along the base, which is a line in the x-y plane. This means that we can write z

in terms of x or y.

We want the function represented by z to be at l when x = x0 or when y = y0.

Next, we will parameterize z along the arc length in the x-y plane, called s. We

can see that s is also a function of x:
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s =
√

(x− x0)2 + (y − y0)2)

=
√

(x− x0)2 + tan θ2(x− x0)2

=
(x− x0)

cos θ
.

(A.3)

Or equivalently it is a function of y:

s =
√

(x− x0)2 + (y − y0)2)

=
√

cot θ2(y − y0)2 + (y − y0)2

=
(y − y0)

sin θ
.

(A.4)

We can now write z as a function of s, and then, by extension, a function of x or

y:

z =
(h− l)
b
∗ s+ l

=
(h− l)
b
∗ (x− x0)

cos θ
+ l

=
(h− l)
b
∗ (y − y0)

sin θ
+ l.

(A.5)

And finally, to pixelate the actual image, we need to perform a line integral across

the pixels that the actual line in the x-y plane falls into. This is done in the code

above, and we will not go over the logic here. However, by inspecting the form of

z above, it is apparent that if we integrate along y for small values of theta, the

z function is nearly infinite, as sin θ = 0 if θ = 0. Correspondingly if we integrate

along x when θ approaches π
2
, z is again singular. It is for this reason that we

split the track drawing algorithms into two sections, one for |θ| < 45 and one for

45 < |θ| < 90.



Appendix B

Matlab and Python Codes

This code was written for use in a Linux environment, and requires Source Ex-

tractor to be appropriately installed. The MATLAB code which is contained here

was written and used in MATLAB R2014a. The Python code which is contained

here was written and used in Python 2.7.

B.1 The Algorithms

B.1.1 Current Algorithm

Included below is the currently used algorithm for determing the head/tail of a

nuclear recoil track in the images investigated in this thesis. This function was

constructed in its entirety by Nguyen Phan at the University of New Mexico. Line

formatting was performed by Joshua Martin for asthetic appearance in this thesis.

The function specified below requires a track on a zero background and the angle

of the semi-major axis of the best fit ellipse. This angle is taken relative to the

x-axis in the image.

function SkewMoments_M = projection_skewness(TrackMask ,TrackAngle)

%%%%%% Track Projection Skewness Calculation

%%%%% Apply Radon transform on the mask of the track , ’TrackMask ’

%%%%%( an image of the track where pixels that are not considered part

%%%%% of the track are set to zero but those part of the track are not )

%%%%% at the major axis angle , ’TrackAngle ’.

47
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radbragg = radon(TrackMask , TrackAngle );

%%%%% ’radbragg ’ is a vector with approximate length of the track major

%%%%% axis containing the projected track values

radbragg(radbragg <= 0) = [];

%%%%% set negative values on the vector edges to zero before calculating

%%%%% distribution moment

% %%%%% Moments

% m2 = moment(radbragg ,2);

% m3 = moment(radbragg ,3);

% m4 = moment(radbragg ,4);

% m5 = moment(radbragg ,5);

%%%%% Change vector data to a distribution before calculating moments and skewness

radtrans = radbragg.’;

%%%%% switch from column to row vector

dt = zeros(size(radtrans ,2) ,1);

%%%%% preallocate array for speed

for cc = 1:size(radtrans ,2)

dt(cc) = cc;

end

wt = round(radtrans)’ ;

%%%%% weighting factors (can increase precision through a scaling factor)

wt(wt <= 0) = 0 ;

dnew = 0;

nnn = 1;

for iii = 1: length(dt)

ggg = nnn + wt(iii);

dnew(nnn:ggg -1) = repmat(dt(iii),wt(iii),1);

nnn = ggg;

end

%%%%% Compute skewness using MATLAB built -in function

radtrans_dist = dnew;

SkewMoments = skewness(radtrans_dist );

%%%%% Compute skewness manually

cmom2 = moment(radtrans_dist , 2);

cmom3 = moment(radtrans_dist , 3);

SkewMoments_M = cmom3 ./( cmom2 .^(3/2));

%%%%% Compute the test statistic for the skewness value for confidence

%%%%% determination (optional , not needed)

k = length(wt);

if (k > 2)
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G = SkewMoments_M .*sqrt(k*(k -1))./(k-2);

SES = sqrt ((6*k*(k -1))./((k-2)*(k+1)*(k+3)));

else

G = SkewMoments_M;

SES = 1;

end

SkewTestStat = G./(SES);

% %%%%% Additional Skewness Definitions

%

% QR = quantile(radtrans_dist ,[.25 .50 .75]);

%%%% quartiles of the distribution

% PR = prctile(radtrans_dist ,[10 50 90]);

%%%% 10, 50, and 90 percentiles

% meanR = mean( radtrans_dist );

%%%% mean of the distribution

% medianR = median( radtrans_dist );

%%%% median of the distribution

% ssigR = std( radtrans_dist );

%%%% standard deviation of the distribution

%

% %%% Bowley skewness:

% skB = (QR (3) + QR (1) - 2* medianR )./( QR(3)-QR (1));

%

% %%% Kelly skewness:

% skK = (PR (3) - 2.* PR (2) + PR (1))./( PR(3)-PR (1));

%

% %%% Pearson skewness:

% skP = 3.*( meanR - medianR )./( ssigR );

%

% %%% Cyhelsky skewness:

% skC = (size( radtrans_dist ( radtrans_dist > meanR ),2) -

% ... size( radtrans_dist ( radtrans_dist < meanR ) ,2))./( size(radtrans_dist ,2));

%

% %%% Moments -based skewness:

% skM = skewness( radtrans_dist );

B.1.2 New Algorithm

This new algorithm was developed by Joshua Martin for use in analyzing im-

ages taken from the TPC developed by N. Phan. This algorithm requires Source

Extractor [13] to be installed. Furthermore it requires the source extractor con-

figuration file “default.sex” to be in the local folder in which the algorithm is run.

Finally, it requires the fits image to be analyzed to be present in the folder.

There are four functions which are required: sextractorrobust, which applies

Source Extractor to the fits image; extracted Data which retrieves the information

from the Source Extractor catalog file; twodmoments, which calculates all of the
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first four two dimensional moments of an image that it is given; and analysisquiet,

which synthesizes the other three functions and outputs a matrix whose rows con-

tain various information specified in the function about each track found in the

given image.

function sextractorrobust(filename)

unix([’sed -i s/AAAA.txt/’ filename ’.txt/g default.sex’])

unix([’sed -i s/AAAA.fits/extracted_ ’ filename ’.fits/g default.sex’])

unix([’sex ’ filename ’.fits’])

unix([’sed -i s/’ filename ’.txt/AAAA.txt/g default.sex’])

unix([’sed -i s/extracted_ ’ filename ’.fits/AAAA.fits/g default.sex’])

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function info = extracted_Data(filename)

% % extracted_Data (filename) takes as an argument the file name of a fits

% image to be analyzed , WITHOUT the .fits extension. It outputs a matrix

% whose rows are the data from source extractor.

sextractorrobust(filename)

fid=fopen([ filename ’.txt’]);

tline = 0;

j = 0;

while 2>1

tline=fgets(fid);

if tline == -1

break

end

j = j +1;

end

clear fid;

fid=fopen([ filename ’.txt’]);

line_parameter = 0;

if j == 14

error(’Source Extractor was unable to find objects for this image’)

end

for i = 1:j

line_parameter = line_parameter + 1;

tline=fgets(fid);

if line_parameter > 14

info(line_parameter -14,:) = str2num(tline);

end

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Results = analysisquiet(filename ,scale ,weight)
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% % Filename should NOT include the .fits extension. example , if your file

% % is ’~\ track.fits ’ you should just enter ’track ’ as a string input to

% % analysis.

% analysis outputs the following data:

% [track number , energy , track location in x, track location in y,

% semi -major variance , third moment in x, third moment in y, unweighted

% semi -major variance]

params = extracted_Data(filename );

full_Image = fitsread ([’extracted_ ’ filename ’.fits’]);

A = size(params );

numberofTracks = A(1);

clear A;

for i = 1: numberofTracks

xmin=params(i,2)-2;

xmax=params(i ,4)+2;

ymin=params(i,3)-2;

ymax=params(i ,5)+2;

xpeak=params(i,6);

ypeak=params(i,7);

x0=params(i,8);

y0=params(i,9);

if xmin < 2 || xmax > 168 || ymin < 2 || ymax > 170

continue

end

track = full_Image(ymin:ymax ,xmin:xmax);

mask = track;

mask(mask ~=0) = 1;

[ypeak xpeak] = find(track == max(max(track )));

track_Moments = twodmoments(track ,weight );

% % twodmoments is a code which outputs the first four moments of a 2-d

% % data distribution .

mask_Moments = twodmoments(mask ,1);

mean = [track_Moments (2), track_Moments (3)];

covar = (1/ track_Moments (1))*([ track_Moments (4) track_Moments (5); ...

track_Moments (5) track_Moments (6)]);

[track_vecs , track_vals] = eig(covar);

covar_mask = (1/ mask_Moments (1))*([ mask_Moments (4) mask_Moments (5); ...

mask_Moments (5) mask_Moments (6)]);

[mask_vecs , mask_vals] = eig(covar_mask );
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direction = [( mask_Moments (2)-xpeak) (mask_Moments (3)-ypeak )];

direction = 5* direction ./norm(direction );

track_Length = sqrt(scale*mask_vals (2 ,2))*2

energy=sum(sum(track ))/250;

Results(i,:) = [i energy track_vecs (1,2) track_vecs (2,2) track_vals (2 ,2)...

track_Moments (7)./( track_Moments (1))...

track_Moments (10)./( track_Moments (1))...

mask_vals (2,2) direction (1) direction (2) track_Length ];

end

fclose(’all’);

end

B.2 Drawing Nuclear Recoil Tracks

Both of the following pieces of code draw nuclear recoil tracks onto a zero back-

ground image that is 500 by 500 pixels in size. These pixels correspond to 16

µm in length on a side. Subsection B.2.3 addresses the convolution, resizing and

addition of noise to appropriately simulate the diffusion and noise in the detector.

B.2.1 Drawing Straight Tracks

In this piece of code, the user must specify the desired length of the track (in

millimeters), the desired energy in the track (in keVee), the desired angle of the

track (relative to the x-axis in degrees), the proportion of energy contained within

the front half of the track (in a decimal between .50 and .75), and whether the

intensity of the track should be drawn as increasing from the angle, or decreasing

from the angle.

Furthermore, there are two functions for drawing tracks, one is for drawing tracks

whose angle in magnitude is less than 45 degrees from the x axis, this is called

shallowtrack. The other is for drawing tracks whose angle in magnitude is between

45 and 90 degrees relative to the x axis. This function is called steeptrack. The

reason for the two functions is explained in appendix A. These two files only take

arguments between -90 and 90 degrees. Other angles can be created by changing



Appendix B: Matlab and Python Codes 53

the direction of the track with the increasing (inc) argument. If inc == 1, the

track will be drawn increasing, if inc == -1, the track will be drawn as decreasing.

function D = shallowtrack(energy ,length ,skew ,theta ,inc)

if abs(theta) >= 45

error(’Please input an angle of magnitudes less than 45 degrees ’)

end

L=length *1000/16;

p=skew;

D=zeros (500 ,500);

% t is the angle that the line makes with the x-axis

t=theta;

% starting points of x and y

% cx=round (200* rand +150);

cx = 200;

cy = 200;

% cy=round (200* rand +150);

f=@(x)(tand(t)*(x-cx)+cy);

g=@(y)(cotd(t)*(y-cy)+cx);

%Ending points of x and y

ex=cx+L*cosd(t);

ey=f(ex);

x=linspace(cx -10,ex +10 ,10000);

h=( energy *2*250/L)*((1+(3 -4*p)/(4*p-1))^ -1);

l=h*((3/8 -p/2)/(p/2 -1/8));

if inc >0

%This is my function

z=@(x)(((h-l)/L)*((x-cx)/cosd(t))+l);

%this is the same function but with the appropriate change of

% integration variable multiplied so that I can integrate it.

zi=@(x)(((h-l)/L)*((x-cx)/cosd(t))+l)*(1/ cosd(t));

else

z=@(x)(( -1*(h-l)/L)*((x-cx)/cosd(t))+h);

zi=@(x)(( -1*(h-l)/L)*((x-cx)/cosd(t))+h)*(1/ cosd(t));

end

for i=cx:(round(ex)+1)

if t>=0

for j = cy:(round(ey)+2)

if g(j-.5) <=(i+.5) && g(j-.5)>(i-.5)

if f(i+.5) <=(j+.5) && f(i+.5)>(j-.5)

D(j,i) = integral(zi,g(j-.5),i+.5)*1;

elseif g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi,g(j-.5),g(j+.5))*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = -integral(zi,g(j-.5),i -.5)*1;
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end

elseif f(i+.5) <=(j+.5) && f(i+.5)>(j-.5)

if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi ,g(j+.5),i+.5)*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = integral(zi ,i-.5,i+.5)*1;

end

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi ,i-.5,g(j+.5))*1;

end

end

if isnan(D(j,i)) == 1

j = j

i = i

break

end

end

else

for j = round(ey)-1:cy

if g(j-.5) <=(i+.5) && g(j-.5)>(i-.5)

if f(i+.5) <=(j+.5) && f(i+.5)>(j-.5)

D(j,i) = -integral(zi,g(j-.5),i+.5)*1;

elseif g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = -integral(zi,g(j-.5),g(j+.5))*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = -integral(zi,g(j-.5),i -.5)*1;

end

elseif f(i+.5) <=(j+.5) && f(i+.5)>(j-.5)

if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi,g(j+.5),i+.5)*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = integral(zi,i-.5,i+.5)*1;

end

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi,i-.5,g(j+.5))*1;

end

end

if isnan(D(j,i)) == 1

j = j

i = i

break

end

end

end

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function D = steeptrack(energy ,length ,skew ,theta ,inc)

if abs(theta) < 45

error(’Please input an angle of magnitude greater than 45 degrees ’)
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end

L=length *1000/16;

p=skew;

D=zeros (500 ,500);

% t is the angle that the line makes with the x-axis

t=theta;

cx = 200;

cy = 200;

f=@(x)(tand(t)*(x-cx)+cy);

g=@(y)(cotd(t)*(y-cy)+cx);

%Ending points of x and y

ex=cx+L*cosd(t);

if abs(t)==90

ey=cy+L*sind(t);

else

ey=f(ex);

end

x=linspace(cx ,ex ,10000);

h=( energy *2*250/L)*((1+(3 -4*p)/(4*p-1))^ -1);

l=h*((3/8 -p/2)/(p/2 -1/8));

if inc >0

%This is my function

z=@(y)(((h-l)/L)*((y-cy)/sind(t))+l);

%this is the same function but with the appropriate change of integration

%variable multiplied so that I can integrate it.

zi=@(y)(((h-l)/L)*((y-cy)/sind(t))+l)*(1/ sind(t));

else

z=@(y)(( -1*(h-l)/L)*((y-cy)/sind(t))+h);

zi=@(y)(( -1*(h-l)/L)*((y-cy)/sind(t))+h)*(1/ sind(t));

end

for i=cx:round(ex)

if t>=0

for j = cy:round(ey)

if g(j-.5) <=(i+.5) && g(j-.5) >=(i-.5)

if f(i+.5) <=(j+.5) && f(i+.5)>(j-.5)

D(j,i) = integral(zi ,j-.5,f(i+.5))*1;

elseif g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi ,(j-.5),(j+.5))*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = integral(zi ,(j-.5),f(i -.5))*1;

end

elseif f(i+.5) <=(j+.5) && f(i+.5) >=(j-.5)

if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi ,(j+.5),f(i+.5))*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = integral(zi,f(i-.5),f(i+.5))*1;

end

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)
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if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi ,f(i-.5) ,(j+.5))*1;

end

end

end

else

for j = round(ey):cy

if g(j-.5) <=(i+.5) && g(j-.5) >=(i-.5)

if f(i+.5) <=(j+.5) && f(i+.5)>(j-.5)

D(j,i) = -integral(zi,j-.5,f(i+.5))*1;

elseif g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = -integral(zi ,(j-.5) ,(j+.5))*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = -integral(zi ,(j-.5),f(i -.5))*1;

end

elseif f(i+.5) <=(j+.5) && f(i+.5) >=(j-.5)

if g(j+.5) <=(i+.5) && g(j+.5)>(i-.5)

D(j,i) = integral(zi ,(j+.5),f(i+.5))*1;

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

D(j,i) = -integral(zi,f(i-.5),f(i+.5))*1;

end

elseif f(i-.5) <=(j+.5) && f(i-.5)>(j-.5)

if g(j+.5) <=(i+.5) && g(j-.5)>(i-.5)

D(j,i) = -integral(zi,f(i-.5) ,(j+.5))*1;

end

end

end

end

end

B.2.2 Tracks from SRIM Data

The following is a set of codes written in Python for extracting data from the

SRIM [14] output file, and drawing those into the appropriate track fits images.

This part was coded in Python because Python’s file read/write is faster than

Matlab’s and we were able to include sqlite query functionality which drastically

improved read speed of the SRIM output text files.

The file srim toFits.py requires another code which was written by Peter Nary for

use in this project, titled srimReader.py.

# srim_toFits .py

’’’

Created on Feb 14, 2015

@author: Joshua Martin
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’’’

from __future__ import division

import pyfits

import scipy.io

import matplotlib.pyplot as plt

import numpy as np

import copy

import os

import sys

sys.path

sys.path.append(’/home/USER/Python/DRIFT/’)

from srimReader import srimParser

energy = 50

angle = 60

set = 1001

sampleParse = srimParser("/home/USER/TrackTextFiles/EXYZ_" + \

str(energy) + "keV" + str(angle) + "Deg.txt")

srim_matout = np.empty ([1 ,7])

srim_begend = np.empty ([1 ,4])

if not os.path.exists(’/home/USER/SRIM/track’ + str(energy) + \

’keV’ + str(angle) + ’Deg’):

os.makedirs(’/home/USER/SRIM/track’ + str(energy) + \

’keV’ + str(angle) + ’Deg’)

for ionNumber in range(1,set):

srim_track = sampleParse.getIonValues(ionNumber)

cx = np.round (((250 -100)* np.random.rand ()+100) ,0)

cy = np.round (((250 -100)* np.random.rand ()+100) ,0)

track = np.zeros ([500 ,500] , float)

srim_pixels = copy.copy(srim_track)

srim_pixels [: ,2:4] = srim_pixels [: ,2:4]*(0.0001)*(1/16)

srim_pixels [: ,2:4] = np.floor(srim_pixels [: ,2:4])

srim_pixels [:,2] = srim_pixels [:,2]- srim_pixels [1,2] + cx

srim_pixels [:,3] = srim_pixels [:,3]- srim_pixels [1,3] + cy

for line in range(1,np.shape(srim_track )[0]):

x = srim_pixels[line ,2]

y = srim_pixels[line ,3]

track[y,x] = track[y,x]+ srim_track[line ,5]*

\np.sqrt(( srim_track[line -1,2]- \ srim_track[line ,2])**2 \

+( srim_track[line -1,3]- \

srim_track[line ,3])**2 \

+( srim_track[line -1,4]-\

srim_track[line ,4])**2)

hdu = pyfits.PrimaryHDU(track)

hdu.writeto(’/home/USER/SRIM/track’ + str(energy) + \

’keV’ + str(angle) + ’Deg/track ’ + str(ionNumber) + ’.fits’, \

clobber = True)

srim_matout = np.vstack (( srim_matout ,srim_pixels ))

srim_begend = np.vstack (( srim_begend ,[ srim_pixels [1,2], srim_pixels [1,3],\

srim_pixels[srim_pixels.shape [0]-1,2],\
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srim_pixels[srim_pixels.shape [0] -1 ,3]]))

srim_matout = np.delete(srim_matout ,0,0)

srim_begend = np.delete(srim_begend ,0,0)

np.savetxt(’/home/USER/SRIM/Fits analysis/SRIMEnergy ’ \

+ str(energy) + ’keV’ + str(angle) + ’Deg.csv’, srim_matout , delimiter=",")

np.savetxt(’/home/USER/SRIM/Fits analysis/SRIMBegEnd ’ \

+ str(energy) + ’keV’ + str(angle) + ’Deg.csv’, srim_begend , delimiter=",")

# srimReader .py

’’’

Created on Mar 14, 2015

@author: Peter Nary

’’’

import sqlite3

import numpy

class srimParser:

__dbPath = ’’

__badIons = []

def getIonList(self):

with sqlite3.connect(self.__dbPath) as conn:

cursor = conn.cursor ()

ionList = []

for datarow in cursor.execute("SELECT DISTINCT ionNumber

FROM Calculations ORDER BY ionNumber"):

ionList.append(datarow [0])

return ionList;

def __getDataRow(self , line):

elements = line.split ()

for x in range(0, len(elements )):

item = elements[x]

if (item[len(item)-1] == "-"):

elements[x]=item [0:( len(item )-2)]

ionNumber = int(elements [0])

kev = float(elements [1])

xAngstrom = float(elements [2])

yAngstrom = float(elements [3])

zAngstrom = float(elements [4])

eva = float(elements [5])

ev = float(elements [6])

return (ionNumber , kev , xAngstrom , yAngstrom , zAngstrom , eva , ev);

def __addLinesToSqlite(self , textLines , dbfilename ):

rows = []

for line in textLines:

try:

rows.append(self.__getDataRow(line))
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except ValueError:

self.__badIons.append(line.split ()[0])

except IndexError:

self.__badIons.append(line.split ()[0])

with sqlite3.connect(dbfilename) as connection:

cursor = connection.cursor ()

cursor.executemany(’’’INSERT INTO Calculations (ionNumber , kev , xAngstrom ,

yAngstrom , zAngstrom , eVA , eV) VALUES (?, ?, ?, ?, ?, ?, ?); ’’’, rows)

return;

def __createDB(self , textFileName ):

dbFileName = textFileName.replace(’.txt’, ’.s3db’)

with sqlite3.connect(dbFileName) as connection:

cursor = connection.cursor ()

cursor.execute(’’’DROP TABLE IF EXISTS Calculations ’’’)

cursor.execute(’’’CREATE TABLE IF NOT EXISTS Calculations (CalcID

INTEGER PRIMARY KEY , ionNumber INTEGER , kev REAL , xAngstrom REAL ,

yAngstrom REAL , zAngstrom REAL , eVA REAL , eV REAL)’’’)

return dbFileName;

def __convertTxtToSqlite(self , textFileName ):

fileReader = open(textFileName)

dbFileName = self.__createDB(textFileName)

currentLine = 0

batchsize = 500000

currentBatch = 0

lineBatch = []

# with fileReader as sys.open( textFileName ):

for textline in fileReader:

if currentLine > 15:

lineBatch.append(textline)

currentBatch +=1

if (currentBatch > batchsize ):

self.__addLinesToSqlite(lineBatch , dbFileName)

currentBatch = 0

del lineBatch [:]

else:

currentLine +=1

if (len(lineBatch) > 0):

self.__addLinesToSqlite(lineBatch , dbFileName)

if len(self.__badIons) > 0:

with sqlite3.connect(dbFileName) as conn:

cursor = conn.cursor ()

for ions in self.__badIons:

cursor.execute("DELETE FROM Calculations WHERE \

ionNumber ={0}".format(ions))

fileReader.close ()

return dbFileName;
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def __init__(self , srimPath ):

self.__dbPath = self.__convertTxtToSqlite(srimPath)

return;

def getIonValues(self , ionNumber ):

results = []

with sqlite3.connect(self.__dbPath) as conn:

cursor = conn.cursor ()

for datarow in cursor.execute("SELECT ionNumber , \

kev , xAngstrom , yAngstrom ," "zAngstrom , eVA , eV FROM Calculations \

WHERE ionNumber =?", [ionNumber ]):

ion = int(datarow [0]) #ionNumber

kev = datarow [1] #kev

xangstrom = datarow [2] #xAngstrom

yangstrom = datarow [3] #yAngstrom

zangstrom = datarow [4] #zAngstrom

eva = datarow [5] #eVA

ev = datarow [6] #ev

results.append ([ion , kev , xangstrom , yangstrom , zangstrom , eva , ev])

return numpy.array(results );

Once the appropriate tracks have been drawn into fits image files by this Python

code, they may be opened and manipulated.

B.2.3 Creating Track Images from Nuclear Recoil Tracks

Once we have our tracks on a zero background we may begin to simulate the effects

of the detector. This is done by loading the track image into a matrix in matlab

if it is a fits file, like the SRIM data from python are.

Once the image is in a matrix, it can be convolved with a two dimensional Gaussian

distribution of width σ = 350µm This corresponds to a pixel size of 21.875. After

that we rebin the image from 500 by 500 to 50 by 50, which results in each pixel

being reduced in intensity by a factor of 100. To offset this we then multiply

the rebinned distribution by 100. We then insert the new 50 by 50 matrix into a

random location in a 170 by 174 matrix of zeros.

Finally we add an appropriate noise distribution to the image. The noise we add

has a mean of 0 and a standard deviation of 10 ADUs. Once this is completed

we may save our image as a fits file and we have completed the simulation of the

detector. The code for this process is immediately below.
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% Either open your image file from the SRIM simulation by running the following

% line:

% before = fitsread(’ TRACKNAME.fits ’)

% Or create a straight track by running one of the following lines:

% before = shallowtrack (energy , length , skew , angle , inc)

% before = steeptrack (energy , length , skew , angle , inc)

L = 50;

kernel = fspecial(’gaussian ’ ,[500 ,500] ,21.875);

before = fitsread ([’/home/USER/Matlab/Research - drift/SRIM/track’ ...

num2str(energy) ’keV’ num2str(angle) ’Deg/track’ num2str(i) ’.fits’]);

before(before > 10^10) = 0;

before(before == Inf) = 0;

% This ensures the track has the correct scaling in ADUs.

before = (250/1000)* before;

after_conv=conv2(before ,kernel ,’same’);

after_res=imresize(after_conv ,[L L]);

CC = clock;

rng(round (10000*( CC(6))),’twister ’);

T = zeros (170 ,174);

locx = round (119* rand) + 1;

locy = round (119* rand) + 1;

T(locx:(locx -1+L),locy:(locy -1+L))= after_res;

T = T*100;

% % T(find(T <0)) = 0;

noise=normrnd (0 ,10 ,[170 174]);

SimulatedTrack=T+noise;

At the end of this code we are left with a matrix called SimulatedTrack. This is

our simulated image, it can be viewed as it is, or saved as a fits image to be used

in analysis later.

This completes the methods for simulating tracks.
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