
Simulating a Boson Sampler

Ezequiel E. Carrasco

Department of Physics and Astronomy

University of New Mexico

April 26, 2014

Abstract

The ideal boson sampler is a linear interferometer that demonstrates interesting

nonclassical optical phenomenon and multi-photon interference. This quantum behav-

ior cannot be simulated using a traditional random sampling approach, and thus it is

shown that detecting the output from a such an interferometer samples from proba-

bility distribution in a way that no classical computer can efficiently simulate. While

not a universal quantum computer, such a device would demonstrate that machines

acting under the laws of quantum mechanics have potential computation power beyond

a classical Turing machine. A case is presented to show why sampling from the proba-

bility distribution generated by a boson sampler is difficult and ultimately intractable

for a classical computer.

1 Introduction

Computers today are classical machines that obey the deterministic physics of everyday life.

However, if a computer could be constructed that exploits the effects of quantum mechanics,

there is potential that such a device could perform some computations more efficiently than a

classical computer.[8] Unfortunately, quantum devices are very delicate, sensitive to error and

environment, and their construction is very demanding. As a stepping stone to a legitimate

universal computer, the ideal boson sampler has the potential to demonstrate a “quantum

advantage” while not preforming universal quantum computation.

An ideal boson sampler as proposed by Aaronson[1] is an interferometer of lossless, linear

optical elements arranged such that photons entering the device are scattered in ways that

demonstrate interesting and nonintuitive quantum effects. The relationship of such an array

of beam splitters and phase shifters to a unitary transformation on photon modes is developed

as described by Reck. [9]

1

The boson sampler scatters a nonclassical state of light known as a Fock state with

multiple but definite numbers of photons in multiple modes into a superposition of possible

output states, each with their own complex amplitude. If the boson sampler is considered

ideal and the photons are indistinguishable, the probabilities of observed output states are

equal to the absolute square of these complex amplitudes of multi-particle states. The

photons entering the boson sampler are considered to be indistinguishable, and hence the

probability of observed outputs are the result of multi-particle interference. Due to this

multi-photon interference we can only define the amplitudes of a coherent, multi-particle

states and not the individual photon’s amplitudes. This complication hinders the ability to

run a simulation that is available for distinguishable photons and classical analogs of the

boson sampler.

A computer model is proposed that takes arbitrary input and generates pseudorandom

output that is taken from the calculated probability distribution of an ideal boson sampler.

As the probability distribution of the coherent quantum states is inherently nonclassical, it is

difficult for a classical computer to simulate efficiently. Each probability involves considering

the interfering amplitudes of all permutations of the photons within the device, which can

be compactly represented by the permanent of a complex matrix [11].

As the number of photons and modes increase, the Fock space increases exponentially,

and the difficulty of using the permanent to calculate each statistical weight of these output

states make such a classical simulation intractable. Moreover, the permanent itself cannot

be calculated or efficiently approximated as the number of photons grow [13]. The boson

sampler, as an optical interferometer, naturally obeys the laws of quantum mechanics. The

boson sampler can thus be considered an analog machine that allows sampling from this

immensely complex probability distribution. As simulating the boson sampler can use ex-

orbitant computer resources, the sampling of a distribution taken from a physical boson

sampler is an example of an analog quantum machine that can perform a specific but lim-

ited task virtually instantaneously and with few resources that a classical computer cannot

efficiently mimic.

A discussion of the finite-dimensional subspace of the Hilbert space relevant to the boson

sampler, the Fock space, is examined and its complexity analyzed. In addition, we present

the processes by which photons prepared in a pure Fock state are coherently scattered by

the boson sampler and describe method to calculate the amplitude of each pure Fock state

in the superposition. Using these tools, we propose a computer simulation that will generate

random output from an ideal boson sampler, and its efficiency and scaling is explored.

2 Foundations

In this section we will discuss how the input states of a boson sampler are prepared, and how

the system of beam splitters and phase shifters act together to scatter the photon modes.

Using these tools, the nonclassical probability distribution that defines the boson sampler

2

is derived. Many of the key ideas were reviewed by Tichy[12] whose work serves as the

foundation for the ideas presented.

2.1 Scattering Matrix Transformation of Modes

Consider N > 1 sources of photons and N detectors. Each source can simultaneously create

definite, known numbers of indistinguishable, noninteracting photons in modes identical to

each other in every way (frequency, temporal shape, polarization, and so forth), except for

the path the photons take upon leaving the source. Further, each detector is considered a

perfect counter of photons, only sensitive to the numbers of photons in the mode, and does

not need to be sensitive to any other aspect of the state. We define j = 1,2, ...N , where the

jth source creates nj photons traveling towards the jth detector.

Let n be the total number of photons that all the sources create. As the initial multi-

mode, multi-particle state for the system has a definite number of photons, we can consider

a finite subspace of the Hilbert space, the Fock space. For a given N and n, there are A

orthogonal Fock states that form a basis for the Hilbert space all the possible initial input

states ∣Ψ(α)⟩ = ∣n
(α)
1 , n

(α)
2 , ..., n

(α)
N ⟩ of the system, where 1 ≤ α ≤ A and, for any α,

N

∑
j=1

n
(α)
j = n. (1)

A is equal to number of different ways n indistinguishable photons can be sorted into N

distinguishable modes, which is given by Feller[2],

A = (
N + n − 1

n
) = (

N + n − 1

N − 1
) =

(N + n − 1)!

n!(N − 1)!
. (2)

A is also equal to the dimensionality of the Fock space that is spanned by all A state vectors.

If the system is lossless and all n photons arrive at the N detectors, then any observed output

state ∣Ψ(β)⟩ is also a member of the same Fock space as the input state ∣Ψ(α)⟩.

We consider sending photons through a linear interferometer as shown in Fig. 1. The

distance of each of the N paths from each source to the corresponding detector is the same.

All N sources are assumed to have created their photons at the same instant, and thus all

n photons arrive at the detectors at the same time. A lossless mirror is placed in the paths

of the photons so that the reflected paths cross at least one other. The pth path crosses the

qth path, where p < q, at a point Ω(p,q) as shown in Fig. 1. Beam splitters and phase shifters

are placed at the points Ω(p,q) as shown in Fig. 2. Lastly, another set of N phase shifters is

placed after the points Ω(p,N) that act on the modes before they enter the detectors as seen

in Fig. 3. All these beam splitters and phase shifters scatter and transform the N modes.

Let â�j be the creation operator for one photon that leaves the the jth source in the jth

mode. Then we have,

3

mirror . . .

1
�
��@

@
@
@
@
@2

�
�
�
�
�@
@
@@

3
�
�
�
�
�
�
�@@

⋱

N
�
�
�
�
�
�
�
�

��@
@@R

⋱

⋱

⋱

1

@
@
@@R

2

@
@
@@R

3

@
@
@@R

⋰

⋰ NΩ(1,2) Ω(2,3)

Ω(1,3) Ω(3,N)

Ω(2,N)

Ω(1,N)

Figure 1: A depiction of the photons’ paths and their crossing

points Ω(p,q) shown in blue. Photon sources are shown in green,

detectors are shown in red and the paths are shown in violet.

∣Ψ(α)⟩ = ∣n
(α)
1 , n

(α)
2 , ..., n

(α)
N ⟩ =

⎛
⎜
⎜
⎝

N

∏
j=1

(â�j)
n(α)j

√

n
(α)
j !

⎞
⎟
⎟
⎠

∣0⟩, (3)

where ∣0⟩ is an A-dimensional subspace of the vacuum state.

The beam splitter and phase shifter arrangements placed at the points Ω(p,q) and the

phase shifters placed after all Ω(p,q) collectively perform a single lossless, unitary scattering

transformation Ŝ on ∣Ψ(α)⟩. A matrix representation of Ŝ has elements Sβ,α given by

Sβ,α = ⟨Ψ(β)∣ Ŝ ∣Ψ(α)⟩ . (4)

As N and n grow, A can become quite large and creating an A×A matrix representation of

Ŝ can be intractable. Instead, we can look at a unitary transformation of the N -input modes

â�j. We represent this new transformation as an N ×N complex unitary matrix Λ that acts

on the N -dimensional space of modes.

Because the photons are non interacting and the interferometer is linear we can imme-

diately write a solution to the scattering evolution. We let k = 1,2, ...,N as for j and define

the elements of the unitary matrix Λ in the following fashion,

Ŝâ�jŜ� =
N

∑
k=1

Λk,j â
�

k. (5)

Thus the input modes â�j evolve into a superposition of all modes with complex amplitudes

Λj,k. We can now see how ∣Ψ(α)⟩ , ∣Ψ(β)⟩ , â�j, Ŝ, and Λ are all related. We can define the

coherent output state ∣Ψ
(α)
out ⟩ as,

4

∣Ψ(α)
out⟩ = Ŝ ∣Ψ(α)⟩ =

A

∑
β=1

Sβ,α∣Ψ(β)⟩ =
⎛
⎜
⎜
⎝

N

∏
j=1

(Ŝâ�jŜ�)
n(α)j

√

n
(α)
j !

⎞
⎟
⎟
⎠

∣0⟩ =
⎛
⎜
⎝

N

∏
j=1

1
√

n
(α)
j !

(
N

∑
k=1

Λj,kâ
�

k)

n(α)j ⎞
⎟
⎠
∣0⟩.

(6)

After ∣Ψ(α)⟩ has evolved under Ŝ, the output state is in a superposition of all states within

the Fock space. The probability of observing a particular ∣Ψ(β)⟩ given by ∣Sβ,α∣
2

is ultimately

related to the matrix Λ and the input state ∣Ψ(α)⟩.

2.2 Transformations at the Crossing Points

Now we will look at the transformations that occur at the crossing points Ω(p,q) as presented

by Reck[9]. To index all crossing points without overcounting, we let 1 ≤ p ≤ N − 1 and

p + 1 ≤ q ≤ N . There are Z total crossing points, where

Z =
N−1

∑
p=1

N

∑
q=p+1

1 = (
N

2
) =

N(N − 1)

2
. (7)

At each point Ω(p,q), a lossless beam splitter with transmittance T (p,q) and reflectivity

R(p,q) is placed, where {T (p,q),R(p,q)} ∈ R and T (p,q) +R(p,q) = 1. In addition, a lossless phase

shifter with associated phase shift ϕ(p,q) where 0 ≤ ϕ(p,q) < 2π is placed along the pth path

before the crossing point. Thus as photons approach and pass through Ω(p,q), the mode

associated with the pth path acquires a phase shift equal to ϕ(p,q), and photons from both

paths superpose and acquire a phase shift associated with the beam splitter.

The system found at Ω(p,q) can be regarded as a 2x2 subsystem of the whole with modes

entering and exiting the system. Let â�p be the creation operator for the input mode ap-

proaching Ω(p,q) from the and leaving by the pth path, and â�q be the creation operation for

the input mode on the qth path. A depiction of the system found at Ω(p,q) is shown in Fig.

2.

As the modes pass through Ω(p,q), they are transformed. To examine this, we consider

a two-element column vector (
â�p

â�q
) valued with the input modes and apply a 2x2 matrix to

this mode-valued vector. The first transformation to apply will be the lossless phase shifter

acting on mode â�p while preserving mode â�q. This action can be represented by the 2x2

unitary matrix Φ(p,q),

Φ(p,q) = (
ei(ϕ

(p,q)
) 0

0 1
) . (8)

Next, the action of the beam splitter on both modes is applied and operates after the

phase shift. As the beam splitter is assumed to be lossless, the matrix Θ(p,q) associated with

the action of the beam splitter will also be unitary. Ignoring the first transformation of the

5

â�p

â�q
�
�
�
�
��Ω(p,q)

â�p

â�q

�
�
�
�
��

@
@
@
@
@R

T (p,q),R(p,q)

ϕ(p,q)
@@

@
@R

Figure 2: A depiction of the placement of the phase shifter

with phase shift ϕ(p,q) and symmetric beam splitter with trans-

mittance T (p,q) and reflectivity R(p,q) placed at the crossing point

Ω(p,q). The input modes are shown in green and the output modes

are shown in red.

phase shifter on the input modes for now (i.e. let ϕ(p,q) = 0 and therefore Φ(p,q) = I), the

transformation of Θ(p,q) on the input modes will take the form,

Θ(p,q)
(
â�p
â�q

) = (
tpp rpq
rqp tqq

)(
â�p
â�q

) = (
tppâ

�
p + rpqâ

�
q

rqpâ
�
p + tqqâ

�
q
) (9)

where {tpp, rpq, rqp, tqq} ∈ C. Eq. 9 shows how the action of the beam splitter defines the

output modes as a superposition of the input modes with complex amplitudes. As Θ(p,q)

is unitary, these amplitudes are normalized (there are no losses due to absorption, etc.).

The amplitude tpp can be seen as the amplitude of mode â�p that is transmitted and rpq as

its reflected amplitude. Similarly, tqq is the transmitted amplitude of mode â�q and rqp its

reflected amplitude.

Using the definition of unitary matrix, (Θ(p,q))
�
Θ(p,q) = I, and also using that for a

complex number z, z∗z = zz∗ = ∣z∣2, we demand that,

(
t∗pp r∗qp
r∗pq t∗qq

)(
tpp rpq
rqp tqq

) = (
1 0

0 1
)⇛{

∣tpp∣2 + ∣rpq ∣2 = ∣tqq ∣2 + ∣rqp∣2 = 1

tppr∗qp + t
∗

qqrpq = t
∗

pprqp + tqqr
∗

pq = 0
(10)

If we allow tpp = tqq =
√
T (p,q) and rpq =

√
R(p,q), rqp = −

√
R(p,q), then these relationships in

Eq. 10 are satisfied. There are many solutions to force the matrix to be unitary, and this

is only one choice. Further, note that while individual photons approaching on either the

pth or the qth path have the same chance of transmission or reflection, a photon on the qth

path that is reflected to the pth path acquires a π phase shift, thus the beam splitter does

not affect photons on the pth and the qth path in quite the same fashion.

6

In order to simplify, let T (p,q) = cos2(θ(p,q)) and R(p,q) = sin2(θ(p,q)), where 0 ≤ θ(p,q) < 2π.

Then we have,

Θ(p,q)
= (

√
T (p,q)

√
R(p,q)

−
√
R(p,q)

√
T (p,q)

) = (
cos(θ(p,q)) sin(θ(p,q))

− sin(θ(p,q)) cos(θ(p,q))
) . (11)

Let χ(p,q) be the 2x2 matrix representation of the ordered action of the phase shifter and then

the beam splitter operating on the input modes. As the product of two unitary matrices,

χ(p,q) will also be unitary. The matrix χ(p,q) is represented as,

χ(p,q) = Θ(p,q)Φ(p,q) = (
cos(θ(p,q)) sin(θ(p,q))

− sin(θ(p,q)) cos(θ(p,q))
)(
eiϕ

(p,q)
0

0 1
) = (

eiϕ
(p,q)

cos(θ(p,q)) sin(θ(p,q))

−eiϕ
(p,q)

sin(θ(p,q)) cos(θ(p,q))
) .

(12)

We can ultimately see that the complete transformation χ(p,q) operating on the input modes

at Ω(p,q) can be described with only two parameters, θ(p,q) and ϕ(pq), and its action on the

modes can be seen as a rotation by two angles in the complex space of modes. Each χ(p,q)

is therefore a member of the rotation group U(2).

We can now describe the action of a beam splitter and phase shifter arrangement at Ω(p,q)

on all N modes. Let λ(p,q) be an N ×N matrix that acts on N modes. To construct λ(p,q),

we first let λ(p,q) = I, then we replace four elements of this identity matrix with the four

elements of χ(p,q) in the following fashion,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ
(p,q)
pp = χ

(p,q)
1,1

λ
(p,q)
pq = χ

(p,q)
1,2

λ
(p,q)
qp = χ

(p,q)
2,1

λ
(p,q)
qq = χ

(p,q)
2,2

. (13)

This construction ensures that the matrix λ(p,q) acts only on the pth and qth modes while

preserving all the other N − 2 modes.

2.3 Transformations After Crossing Points

After all the crossing points Ω(p,q), another set of N phase shifters is placed before each

detector, each with phase shift ψj. A diagram of the placement of these phase shifters is

shown in Fig. 3. These phase shifters ensure that we can implement an arbitrary linear

scattering matrix represented by Λ in Eq. 6 as described in the Appendix A.

The final operation on the N modes after the operations of Z matrices λ(p,q) is the final

set of phase shifters with phase shift ψj, where 0 ≤ ψj < 2π. This can be represented by a

diagonal N ×N matrix Y that has the form,

7

mirror.

⋱

N
�
�
�
�
�
�
��

⋰
�
�@@

@@R

1

ψ1

@
@
@

⋱

@@R

2

ψ2

@
@
@

⋱

@@R

⋰

⋰ N

ψN

Ω(1,N)

Ω(2,N)

Figure 3: The placement of the set of N phase shifters with

phase shift ψj .

Y =

⎛
⎜
⎜
⎜
⎜
⎝

eiψ1 0 ⋯ 0

0 eiψ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ eiψN

⎞
⎟
⎟
⎟
⎟
⎠

. (14)

The structure of this matrix ensures that the phase shift ψj only acts on the jth mode. The

action of Y can be seen as a rotation in the complex space of modes by an angle ψj. This

action can be reversed and is given by Y−1 = Y�, where ψj → −ψj.

2.4 Complete Transformations on All Modes

The combined, ordered operation of all λ(p,q) matrices and the final Y transformation serve

to describe the single matrix Λ that acts on the initial, original input modes as presented in

Eq. 5. The N ×N matrix Λ becomes,

Λ = Y[λ(N−1,N)][λ(N−2,N)λ(N−2,N−1)] . . . [λ(1,N)λ(1,N−1) . . . λ(1,3)λ(1,2)], (15)

where the brackets indicate grouping by the pth modes. To further emphasize this grouping,

let the matrix L(p) be defined as,

L(p) = λ(p,N)λ(p,N−1) . . . λ(p,p+2)λ(p,p+1). (16)

The matrix L(p) can be seen as a rotation upon a single vector as discussed in the Appendix

A.

8

2.5 Interference Between Two Indistinguishable Photons

The unique behavior seen within the boson sampler comes from the interference among the

indistinguishable photons. To explore this, we consider the simplest example of multi-photon

interference with only two modes and one photon in each mode and a 50-50 beam splitter

that scatters both photons as they interact with it at the same time. This situation is

illustrated in Fig. 4.

Figure 4: Depiction of the four scattering possibilities of two photons each in their own mode

encountering a beam splitter. This image was created by Kok.[6]

The meanings of the signs seen in the Fig. 4 will be discussed later. First consider the

case of distinguishable photons, which give classical results. There are four possibilities to

consider. The possibility labeled 1 where the photons bunch and head towards the top

detector is equal to 0.5 × 0.5 = 0.25, as there is a 50% chance of the top photon reflecting,

and an independent 50% chance of the bottom photon transmitting. There is a 25% chance

both photons transmit as in possibility 2, and 25% chance both reflect as in possibility 3.

Note that these are not the same outcomes, as each photon is distinguishable and therefore

it is possible to tell which photon went to which detector. However, the chance that each

detector counts one photon each is 0.25+0.25 = 0.5, and is the most commonly seen outcome.

Lastly, there is a 25% chance to see possibility 4, where the photons bunch and land in the

bottom detector.

Now we send in indistinguishable photons, and the phases associated with these possi-

bilities are important. Let us define the scattering matrix Λ for this situation as,

Λ =
1

√
2
(

1 1

−1 1
) . (17)

For possibility 1, the top photon reflects with a positive amplitude Λ1,2 =
1
√

2
, and the bottom

acquires Λ2,2 =
1
√

2
, and so the overall phase is positive. For possibility 2, both transmit, and

the photons receive the phases on the diagonal, and so the product of the photons’ phases is

positive. For possibility 3, the photons receive the phases of the off-diagonal elements, and

therefore the phase for this possibility is negative. Lastly, for possibility 4, the top photon

receives amplitude Λ1,1 = 1
√

2
and the bottom obtains Λ2,1 = − 1

√

2
, and the phase for this

9

bunching outcome is negative.

If the photons are indistinguishable and each detector counts one photon each, there is

no way to determine if possibility 2 or 3 was detected. In this regard, possibilities 2 and

3 are members of the same state, and thus their amplitudes sum. In the case of a 50-50

beam splitter, this indicates that the amplitudes, one positive and one negative, completely

cancel. Therefore, in this finely-tuned case, possibilities 2 and 3 are never encountered. This

complete suppression of this output state is known as the Hong-Ou-Mandel effect[4].

To analyze the mathematics of this phenomenon in a more general sense, we let N = n = 2,

use no phase shifter, and use the transmittivity T and reflectivity R as the elements of the

2 × 2 matrix Λ,

Λ = (

√
T

√
R

−
√
R

√
T
) (18)

The input state is given by,

∣Ψ(α)⟩ = â�1â
�
2 ∣0⟩ = ∣1,1⟩ . (19)

Applying the scattering operator Ŝ and using the identity Ŝ�Ŝ = I, we have,

Ŝ ∣1,1⟩ = Ŝa�1a
�
2 ∣0⟩ = Ŝa�1Ŝ�Ŝa�2Ŝ�Ŝ ∣0⟩ . (20)

Noting that Ŝ ∣0⟩ = ∣0⟩ and using Eq. 5, we can rewrite Eq. 20 as,

(Ŝâ�1Ŝ�) (Ŝâ�2Ŝ�) ∣0⟩ = (
√
T â�1 −

√
Râ�2) (

√
Râ�1 +

√
T â�2) ∣0⟩

=
√
TR (â�1)

2
∣0⟩ −

√
TR (â�2)

2
∣0⟩ + T â�1â

�
2 ∣0⟩ −Râ

�
2â

�
1 ∣0⟩ .

(21)

In the case of distinguishable photons, the operators acting in the order â�1â
�
2 with ampli-

tude T create a state ∣1,1⟩T that is distinguishable from ∣1,1⟩R created by the operators â�2â
�
1

with amplitude −R. This stems from the fact that as the photons are distinguishable, it is

possible to tell if both photons transmitted or both photons reflected when ∣1,1⟩ is detected,

as mentioned previously. For example, if the top photon is “red” and the bottom is “blue,”

then if the top detector sees red and the bottom blue, then we know both photons reflected.

The coherent output state for distinguishable photons ∣1,1⟩dis is then given by,

Ŝ ∣1,1⟩dis =
√
TR ∣2,0⟩ −

√
TR ∣0,2⟩ + T ∣1,1⟩T −R ∣1,1⟩R . (22)

The probabilities of seeing each output state is given by the absolute square of the amplitudes,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣⟨2,0∣ Ŝ ∣1,1⟩dis∣
2
= TR

∣⟨0,2∣ Ŝ ∣1,1⟩dis∣
2
= TR

∣⟨1,1∣ Ŝ ∣1,1⟩dis∣
2
= T 2 +R2

(23)

10

However, if the photons are indistinguishable, then there is only one ∣1,1⟩ state, and the

final probabilities are different. The amplitudes T and −R interfere with each other and are

grouped and summed together. If Ŝ ∣1,1⟩ind is the coherent output state for indistinguishable

photons, then,

Ŝ ∣1,1⟩ind =
√

2TR ∣2,0⟩ −
√

2TR ∣0,2⟩ + (T −R) ∣1,1⟩ (24)

The probabilities for the indistinguishable case are given by,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣⟨2,0∣ Ŝ ∣1,1⟩ind∣
2
= 2TR

∣⟨0,2∣ Ŝ ∣1,1⟩ind∣
2
= 2TR

∣⟨1,1∣ Ŝ ∣1,1⟩ind∣
2
= (T −R)2

(25)

The interference between photons that changes the probability distributions from the dis-

tinguishable case to the indistinguishable as seen by comparing the two sets give rise to the

interesting behavior of photons traveling through a boson sampler. As discussed above, if a

50-50 beam splitter is used for indistinguishable photons, where T = R = 1
2 , then it can be

seen that the amplitude for the ∣1,1⟩ state goes to zero for the indistinguishable photons and

thus is never observed.

To see the Hong-Ou-Mandel effect, the photons must arrive at the beam splitter at the

same time, and their respective wave functions must be identical except for the paths they

follow. However, we can assume that they arrive at slightly different times, and interesting

effects can be seen. If two photons are slightly displaced in time, there is a chance that either

the distinguishable or the indistinguishable probability distributions will be observed. The

farther apart in time the photons are separated, the more chance there is of not seeing the

Hong-Ou Mandel effect. This can be graphically illustrated in a plot of the “HOM Dip.”

Fig. 5 shows the continuum between the case where there is zero chance of seeing state

∣1,1⟩ in the indistinguishable case and the 50% chance of seeing ∣1,1⟩ as with distinguishable

photons. When the difference of arrival times is around zero, the photons are more likely to

be observed as indistinguishable, and the output state ∣1,1⟩ is suppressed. As the photons

arrive more and more farther apart in time, then the chance of both detectors counting a

photon becomes the most likely outcome. The HOM Dip demonstrates the need for tight

control of all aspects of the photons prepared and sent through the interferometer. As the

photons become more distinguishable, the probability distribution changes.

2.6 Output State Probabilities

This section details how to calculate the probability weight of possible output states for

distinguishable and indistinguishable photons being scattered by a boson sampler, and how

these calculations compare to those of a classical example.

11

Figure 5: Plot of the HOM Dip. The time separation axis is shown in units of ∆t of the

spread of the Gaussian amplitude of the photons’ temporal shapes.

2.6.1 The Classical Analog, Distinguishable Photons and the Permanent

To demonstrate how the probabilities of observing possible output states of a boson sampler

compare to other distributions, first consider a crude classical analog. Imagine a pinball-

like machine that takes n total ball bearings sorted into N launchers and sends the ball

bearings, one at a time, along paths that cross each other. At the crossing points Ω(p,q),

a computer-controlled gate-like device randomly “transmits” a ball bearing, keeping it on

the same path, or “reflects” it, sending it from the pth path to the qth path or vice versa.

There are no analogs for the phase shifters as complex phase has no meaning in this context.

Further, these ball bearings are considered to be non-interacting, for instance they do not

bounce off each other, and if two or more ball bearing enter a gate at the same time, it does

not affect how the gates affect their individual paths. At the end of the balls’ paths are bins

that collect the balls for counting.

Like for the boson sampler, there is a number-space of ball bearings that includes the

input number state of n ball bearings spread out among N launchers, and A possible output

number states that is also equal to the number of different ways of sorting n balls into N

bins as in Eq. 2.

A method for determining the probability of a classical ball bearing starting from the kth

launcher and being collected in the jth bin can be found by constructing a matrix that is the

analog to the modal transformation matrix Λ, which we will call C . As with the photons,

we construct a matrix similar to λ(p,q) from Eq. 13, renamed λ
(p,q)
c , that does not contain

complex phases but the non-negative probabilities of a ball bearing changing paths from the

pth path to the qth path and vice versa. The Z matrices λ
(p,q)
c multiplied together in the

12

order specified by Eq. 15 constructs C. Note that this matrix does not act on an equivalent

space of modes as there is no superposition in this classical analog. The matrix serves as

a tool to find the ultimate probability of a ball bearing starting on the kth path and being

collected in the jth bin, given as the (j, k) element of the C matrix.

Using the pinball machine analog and the constructed matrix C, we can find the proba-

bility of seeing a particular output state given an input state. For the case where the number

of balls equal the number of bins and one ball is sent out from each launcher, the probability

of finding an output state is given by,

Pβ,α = ∑
σ∈Sβ,α

N

∏
j=1

Cj,σ(j), (26)

where the set Sβ,α is all permutations of the indices (1,2, ...,N) that assigns the ball bearings

from the jth launcher to the desired collection bin. Depending on the input and output states,

the number terms in the sum of Eq. 26 can range from 1 to N !.

Of particular interest is the case of the probability of observing one ball landing in each

bin. The set Sper associated with this setup includes all N ! permutations of the set of

numbers (1,2, ...,N) as there are N ! different ways to arrange N distinguishable balls into

N bins. The probability Pc associated with this special case is,

Pc = ∑
σ∈Sper

N

∏
j=1

Cj,σ(j) = Per(C), (27)

where Per(C) is the permanent of the matrix C and is defined by Eq. 27. The permanent is

defined in the same way as the more familiar determinant except there is no alternating sign

change between the terms of products. However, unlike the determinant, the permanent is

much more difficult to calculate or approximate.

There is a similar equation for the probability of finding n distinguishable photons in N

modes where n = N , and where the input state and the output state are both ∣1,1, ...,1⟩. We

define a new matrix D which has components equal to the absolute square of the components

of Λ as Dj,k = ∣Λj,k∣
2, where the probability of a distinguishable photon from the jth mode

reaching the kth detector is given by the absolute square of the amplitude associated with

this transition. Note that the matrix D may not be unitary and does not act on the space of

modes. Like C, it is a tool to calculate probabilities, and from a mathematical perspective,

is identical to C.

The probability Pd related to distinguishable photons in this special regime is given by,

Pd = ∣ ⟨1,1, ...,1∣ Ŝ ∣1,1, ...,1⟩ ∣2 = Per(D). (28)

13

http://en.wikipedia.org/wiki/Permanent

2.6.2 Indistinguishable Bosons and the Permanent

For indistinguishable bosons, the situation is more complicated. In addition to looking at

the case where n = N and ∣Ψ(α)⟩ = ∣Ψ(β)⟩ = ∣1,1, ...,1⟩, we will elaborate into a more general

regime where n and N can vary, and where the input and output states of interest are not

restricted.

First we construct a new set of N × N matrices, N(α,β), with elements n
(α,β)
j,k . These

matrices are constructed so that the following is satisfied,

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

N

∑
k=1

n
(α,β)
j,k = n

(α)
j

N

∑
j=1

n
(α,β)
j,k = n

(β)
k .

(29)

For a given ∣Ψ(α)⟩ and ∣Ψ(β)⟩, the number of N(α,β) matrices in the associated set will differ.

For instance, for n = N , ∣Ψ(α)⟩ = ∣1,1, ...,1⟩ and ∣Ψ(β)⟩ = ∣N,0,0, ...,0⟩, there is only one matrix

in the set corresponding with these input and output states, one where the N elements of

the first column of the matrix are all equal to 1 and the rest of the elements of the matrix

are 0. In contrast, for n = N and ∣Ψ(α)⟩ = ∣Ψ(β)⟩ = ∣1,1, ...,1⟩, there are N ! matrices in the

set, one for each different way to sort the rows of an N ×N identity matrix. The number

of matrices N(α,β) in a set reflect the number of different paths photons in the input state

∣Ψ(α)⟩ can take that results in the desired output state ∣Ψ(β)⟩.

We now look again at Eq. 6. Concentrating on a portion of Eq. 6 and applying the

multinomial theorem, for a given fixed j,

(
N

∑
k=1

(Λk,j) â
�

j)

n(α)j

= n(α)j ! ∑
N(α,β)∀β

N

∏
k=1

1

n
(α,β)
j,k !

(Λk,jâ
�

k)
n
(α,β)
j,k

, (30)

where the sum is taken over each member of the sets containing all N(α,β) for all β. This

equation changes the product of sums into sums of products. Substituting Eq. 30 into Eq.

6, we have

Ŝ ∣Ψ(α)⟩ =
⎛

⎝

N

∏
j=1

√

n(α)j ! ∑
N(α,β)∀β

N

∏
k=1

1

n
(α,β)
j,k !

(Λk,jâ
�

k)
n(α,β)j,k ⎞

⎠
∣0⟩. (31)

We can rewrite Eq. 31 by defining the coefficient K(α,β) related to each N(α,β) as

K(α,β)
=

N

∏
`=1

√

n(α)` !

N

∏
`=1

N

∏
`′=1

n(α,β)`,`′ !

. (32)

14

http://en.wikipedia.org/wiki/Multinomial_theorem

Rearranging Eq. 31 and substituting in K(α,β) for compactness, we have

Ŝ ∣Ψ(α)⟩ = ∑
N(α,β)∀β

K(α,β)
N

∏
j=1

N

∏
k=1

(Λk,jâ
�

k)
n(α,β)j,k

∣0⟩. (33)

Now we look at Eq. 33 and any given term from the sum and see how all of the creation

operators act on the vacuum state. Extracting and rearranging,

K(α,β)
N

∏
j=1

N

∏
k=1

(Λk,jâ
�

k)
n(α,β)j,k

∣0⟩ =K(α,β)
(
N

∏
j=1

N

∏
k=1

(Λk,j)
n(α,β)j,k

)
⎛

⎝

N

∏
j=1

N

∏
k=1

(â�

k)
n(α,β)j,k

∣0⟩
⎞

⎠
. (34)

Concentrating on the double product with the creation operators â�k that act on ∣0⟩, we can

see that,

N

∏
j=1

N

∏
k=1

(â�

k)
n(α,β)j,k

∣0⟩ =
N

∏
k=1

⎛

⎝
(â�

k)
n(α,β)1,k

(â�

k)
n(α,β)2,k

. . . (â�

k)
n(α,β)N,k ⎞

⎠
∣0⟩ =

N

∏
k=1

(â�

k)
n(β)k

∣0⟩. (35)

Here we can see how the N creation operators â�k act to place n
(β)
k photons in the kth mode of

the output state ∣Ψ(β)⟩. After applying all the â�k operators to the vacuum state, normalizing,

and substituting the result into the term shown in Eq. 34, we have,

K(α,β)
N

∏
j=1

N

∏
k=1

(Λk,jâ
�

k)
n(α,β)j,k

∣0⟩ =K(α,β)
(
N

∏
j=1

N

∏
k=1

(Λk,j)
n(α,β)j,k

)(
N

∏
`=1

√

n(β)` !) ∣Ψ(β)⟩. (36)

Using this result, substituting it into Eq. 33, using the definition of K(α,β), and rearranging,

Ŝ ∣Ψ(α)⟩ = ∑
N(α,β)∀β

N

∏
j=1

N

∏
k=1

√

n(α)j ! n(β)j !
(Λk,j)

n(α,β)j,k

n
(α,β)
j,k !

∣Ψ(β)⟩. (37)

We can now look at the amplitude and hence the probability related to a particular

∣Ψ(β)⟩,

⟨Ψ(β)∣Ŝ ∣Ψ(α)⟩ = ∑
N(α,β)

N

∏
j=1

N

∏
k=1

√

n
(α)
j !n

(β)
k !

n
(α,β)
j,k !

(Λk,j)
n(α,β)j,k

, (38)

where we can restrict the sum over only the matrices N(α,β) with the same β as the output

state ⟨Ψ(β)∣.

If n = N and ∣Ψ(α)⟩ = ∣Ψ(β)⟩ = ∣1,1, ...,1⟩, we can look at a particular case of Eq. 38. As

discussed before, the number of N(α,β) matrices and hence number of terms in the sum is

equal to N !,

15

⟨1,1, ...,1∣Ŝ ∣1,1, ...,1⟩ = ∑
N(α,β)

N

∏
j=1

N

∏
k=1

Λ
n(α,β)j,k

k,j (39)

In Eq. 39, there are only N values of the exponent n
(α,β)
j,k that are equal to 1, and the other

N2 −N values are 0. As all N(α,β) represent the N ! ways to permute the different rows of an

N ×N identity matrix, this allows us to view Eq. 39 as a sum of products of all elements of

Λ under all permutations of indices. This makes Eq. 39 equivalent to,

⟨1,1, ...,1∣Ŝ ∣1,1, ...,1⟩ = ∑
N(α,β)

N

∏
j=1

N

∏
k=1

Λ
n(α,β)j,k

k,j = ∑
σ∈Sper

N

∏
j=1

Λj,σ(j), (40)

and finally, using the definition of the permanent,

∣⟨1,1, ...,1∣ Ŝ ∣1,1, ...,1⟩∣
2
= ∣Per(Λ)∣

2
(41)

As with the classical analog and the case of distinguishable photons, the permanent can

be used to describe the probabilities related to the input state and the output state equal to

∣1,1, ...,1⟩ for situations involving indistinguishable photons. However, unlike in the case of

distinguishable particles, due to the complex elements of Λ, approximating the permanent

of Λ is intractable as N increases as discussed in Sec. 3.2.

It is important to note that if the indistinguishable particles in question were fermions,

there would be a sign change upon the exchange of two particles in the output modes, which

would result not in the use of the permanent but instead the determinant. However, as the

absolute value of the determinant of any unitary matrix is always 1, this demonstrates that

a “fermion sampler” would only detect output states of ∣1,1, ...1⟩ and never anything else,

as to be expected given the exclusion principle and the antisymmetric nature of fermion

wavefunctions. Such a device would be quite boring and trivial to simulate.

We can look at situations when neither ∣Ψ(α)⟩ nor ∣Ψ(β)⟩ are equal to ∣1,1, ...,1⟩. Returning

to Eq. 38, we can simplify this complex amplitude using the permanent of a matrix with

elements taken from Λ. We first define this new n×n matrix Λ(α,β) that has elements from Λ

as described by Scheel[11]. This matrix is constructed so that when its permanent is taken,

the amplitudes for the n photons beginning in ∣Ψ(α)⟩ are permuted, multiplied and summed

in all the ways to produce ∣Ψ(β)⟩ with the proper interference effects. A MATLAB function

getScheelMatrix.m that creates this matrix is shown in the Appendix C.1.

The construction of Λ(α,β) is best illustrated with an example. Let ∣Ψ(α)⟩ = ∣3,0,1⟩ and

∣Ψ(β)⟩ = ∣1,2,1⟩. In the input state, we will have three amplitudes for three photons Λ1,k

and one amplitude Λ3,k for the last photon in the last mode. Therefore, within Λ(α,β), we

will have three elements from Λ with the row index 1 and one element with row index 3.

In the output state, we will have one amplitude Λj,1, two with Λj,2 and one with Λj,3. The

elements in Λ(α,β) have elements from Λ with repeated row indices as defined by the number

16

of photons in each mode of input state and repeated column indices as indicated by the

output state. Putting this all together, we have,

∣Ψ(α)⟩ = ∣3,0,1⟩

∣Ψ(β)⟩ = ∣1,2,1⟩
}⇒ Λ(α,β) =

⎛
⎜
⎜
⎜
⎜
⎝

Λ1,1 Λ1,2 Λ1,2 Λ1,3

Λ1,1 Λ1,2 Λ1,2 Λ1,3

Λ1,1 Λ1,2 Λ1,2 Λ1,3

Λ3,1 Λ3,2 Λ3,2 Λ3,3

⎞
⎟
⎟
⎟
⎟
⎠

(42)

If we take the permanent of Λ(α,β), due to its construction of repeated elements taken

from Λ, we will have more products than indicated by the double product in Eq. 38, which

has only n products not equal to 1. In particular,

Per(Λ(α,β)) = ∑
N(α,β)

N

∏
j=1

N

∏
k=1

n
(α,β)
j,k !

n
(α)
j !n

(β)
k !

(Λk,j)
n(α,β)j,k (43)

Substituting the relationship of Eq. 43 into Eq. 38, we have the elegant expression given

by Scheel [11],

∣⟨Ψ(β)∣ Ŝ ∣Ψ(α)⟩∣
2
=

∣Per(Λ(α,β))∣
2

N

∏
j=1

n
(α)
j ! n

(β)
j !

(44)

Again, the permanent can be used to present a compact expression for the probabilities

related to different output states.

3 Predicting Output Possibilities

3.1 Simulations

A boson sampler will very quickly detect an output state when photons prepared in an input

Fock state are put through the interferometer. A possible detected output state ∣Ψ(β)⟩ will be

detected with probability ∣ ⟨Ψ(β)∣ Ŝ ∣Ψ(β)⟩ ∣2, and an ideal boson sampler naturally “chooses”

a ∣Ψ(β)⟩ out of the A possibilities each time it is run. The challenge is instructing a classical

computer to do the same within the same probability distribution.

Consider first the case where the bosons are distinguishable. While in this case the

photons do not interfere with each other, a single photon still interferes with itself as in the

single-photon, double-slit experiment. One method to determine an output state from the

probability of a boson sampler scattering distinguishable particles is to calculate the chance

of seeing each A possible output states and sampling a random number to choose ∣Ψ(β)⟩

from the A choices. However, A grows dramatically with N and n, and by taking advantage

of computerized random sampling, generating an output state from distinguishable photons

does not require calculating the probability of each possible output state.

17

We can, however, use a computer simulation for any given input state that randomly

chooses a final detected mode for each single photon one at a time if the photons are distin-

guishable. In this case, the probability of a photon created in the jth mode being detected

by the kth detector is merely the absolute square of the complex amplitude Λj,k. The actual

path a photon could have been regarded to take is unknown as any premature observation

would decohere the system. All that can be known is the probability of a single photon

arriving at a single detector.

Using this method, for each of the n photons, we can sample normally-distributed pseu-

dorandom numbers generated by a computer that determine where an individual photon

ultimately lands. Thus by sampling n random numbers, we can pick out a randomly gen-

erated output state that will be taken from the distribution generated by a boson sampler

with distinguishable particles.

To determine a photon’s ending point, each random number ρ is taken between 0 and 1.

If we are looking at a photon that begun in the jth mode, and 0 ≤ ρ ≤ ∣Λj,1∣
2, then we put the

photon in the first bin. If ∣Λj,1∣
2 < ρ ≤ ∣Λj,2∣

2+ ∣Λj,1∣
2, then the photon lands in the second bin,

and so on, carving up the region between 0 and 1 into N pieces each with length ∣Λj,k∣
2 for

a given j to randomly determine the fate of a distinguishable photon that begins in the jth

mode. This procedure is repeated with newly generated ρ for each of the n photons. After

n random numbers are sampled, the photons are counted in their bins and an output state

is generated. This takes much less resources than considering all A possible output states.

Essentially the same procedure can be applied to the classical analog where the transition

probabilities are encoded in the matrix C. The only use of quantum mechanics in the case

of distinguishable bosons is that the probabilities are defined by the absolute square of the

amplitudes Λj,k.

In stark contrast, if the photons are indistinguishable, the probability of a single photon

arriving at a particular detector no longer has meaning. Indistinguishable photons not only

interfere with themselves but also with each other, in the sense that multi-photon processes

interfere with other process. The probabilities are coupled and there is no way to simulate

photons traveling through the device one at a time.

To further illustrate the differences between simulating distinguishable and indistinguish-

able photons, consider the example discussed in Sec. 2.5, where n = N = 2 and T = R = 1
2 .

If we were to sample two random numbers and use these to determine whether the top and

bottom photons reflect or transmit, we would obtain the correct probability distribution of

the output states for distinguishable photons. However, sampling two random numbers to

determine individual photon paths does not yield the correct probabilities for the case of two

indistinguishable photons as the ∣1,1⟩ output state is impossible to observe.

For indistinguishable photons, to randomly determine an output state given an input

state and a Λ matrix, the complex amplitude of each member of the Fock space must be

calculated. Using these amplitudes, the region between 0 and 1 can be carved up into A

pieces, and one and only one random number is sampled to determine an output taken from

18

the correct probability distribution. The problem becomes one of brute force calculation

and can no longer rely on the advantages of computerized random sampling. A correct

method using random sampling or another technique would be preferred, but appears to be

impossible.

3.2 Using the Permanent

Calculating the possibilities associated with possible output states uses the permanent for

special cases of distinguishable photons and the classical analog as well as for all cases of

indistinguishable photons. If calculating the A possibilities within the Fock space is desired,

a task that ultimately scales undesirably with n and N , calculating the permanent for each

A is used, a task by itself that scales just as poorly.

As can be seen from the definition in Eq. 27, there are N ! terms in the permanent, or

in the case of the Λ(α,β) matrices, n! terms. In any case, calculating this probability does

not scale well for either N or n. It has been proven by Valiant [13] that the problem of

calculating the permanent cannot be calculated in polynomial time, where resources scale as

some polynomial function of the size of the matrix. There are options, however, that reduce

the number of calculations on the order of N ! as demanded in Eq. 27.

The elements of the matrices C and D are all non-negative and real, and there exists an

algorithm using random sampling to accurately estimate the permanent of such a matrix

in polynomial time as developed by Jerrum et al [5]. In this particular case, a classical

computer can efficiently approximate the probabilities Pc and Pd. The elements of Λ are

complex, and therefore can not make use of this approximation. This difference is the key to

the importance of the boson sampler. For a matrix with complex entries, the permanent is

provably inefficient to calculate or approximate, lying in a complexity class #P -complete[13].

Due to the effects of identical interfering photons, the probability of any outcome cannot be

efficiently calculated as the number of photons and modes increases, as opposed to the case

of distinguishable photons. The boson sampler is therefore potentially a machine that has

access to complexity classes unreachable to a computer that operates in the classical regime.

The Ryser formula [10] provides a faster way to calculate the permanent of a matrix

that can’t use Jerrum’s method as in the case of indistinguishable photons. However, this

only reduces the number of calculations to the order of 2nn2 for the permanents of the

Λ(α,β) matrices. While this is an improvement over n!, the scaling is still not ideal for a

classical computer. An elegant and simple MATLAB function ryserPermanent.m written

by Winslow [14] provides a way to calculate the permanent of a matrix without hefty memory

demands.

Using the Ryser formula to compute the permanents of all A matrices Λ(α,β) to calculate

the probability distribution across the entire Fock space, a least G calculations are needed

where,

19

G = A(2nn2) = 2nn2 (N + n − 1)!

n!(N − 1)!
(45)

The scaling nature of G shows that using a classical computer to randomly determine an

output state by calculating all possibilities is intractable for large n and N .

4 Results

4.1 Computation Times and Probability Distributions

Fig. 6 shows the average computation times taken by a typical desktop computer to calculate

the entire probability distribution over the Fock space. As can be seen, the computation

time rises quite dramatically as n = N increases. The method proposed it too cumbersome

to scale to high numbers of modes and photons. Indeed, the problem cannot be made much

easier for a classical computer to handle.

Fig. 7 shows the probability distributions for n = N = 5. Even with such small numbers

of modes and photons, the expanse of the Fock space is impressive.

The Appendix C.2 details the MATLAB function getBiOutputAmps.m that calculates

the probability distribution of a virtual boson sampler given a Λ and ∣Ψ(α)⟩, and the function

getBosonSample.m generates random output from this distribution. These functions can

serve as a method to simulate a boson sampler on a computer, albeit with severe demands

of computation time.

4.2 Discussion

While an ideal boson sampler that scatters indistinguishable photons is not a universal

quantum computer, it does offer a way to sample from a probability distribution that is

very difficult for a classical computer to compute and impossible to simulate using random

sampling for each photon. Unlike classical regimes, or even that of distinguishable photons,

the state must be considered as a whole, and the myriad of ways the photon amplitudes

interfere with each other provide a huge obstacle towards simulating the boson sampler on

a classical computer.

The solution proposed, of using brute force calculation to generate the probability dis-

tribution over the entire Fock space and randomly sample from it, is extremely limited. As

the number of modes and photons increase, the computational difficulty of directly calculat-

ing the probability distribution soars exponentially. While calculating the permanent that

provides the probability of a single possible output does not scale well with the number of

photons, the Fock space itself scales even more poorly and provides the greatest challenge

to simulating a boson sampler using the direct calculation method.

20

Figure 6: Plots of number of modes versus average computation time taken to compute the

amplitudes of all members of a Fock space where n = N and the input state was given to be

∣1,1, ...,1⟩. Specifically, the times taken for the MATLAB function getBiOutputAmps.m

to run were recorded. This function can be seen in Appendix C.2. For each mode, nine

trials were averaged and a random unitary N ×N Λ matrix (see Appendix C.4) was used for

each trial. The top plot shows modes 3 to 8, and the second shows modes 3 to 10 in order

to emphasize the increase of computation time as N increases. The calculation times were

gathered on a computer using 32-bit Windows XP SP3 with Intel Core 2 CPU E6420 @ 2.13

GHz running MATLAB R2014a. While the computer has two processors, only one was used

to compute the amplitudes.

Because of the difficulties faced by a classical computer, the ideal boson sampler, within

its limited regime, offers an example of a device that exploits quantum mechanics to generate

output that is intractable for a classical computer to emulate.

5 Outlook

The issue of the increasing size of the Fock space and the complexity of the permanent

ultimately limit the method of calculating the probability distribution. If a method of

using random samples to simulate a boson sampler for indistinguishable particles can be

developed to surmount the obstacle of the Fock space and the permanent, the simulation

may be improved, but ultimately the nature of the problem as it stands is out of reach of a

classical computer. Unless certain foundations of classical computational complexity theory

collapse, implementation of an ideal boson sampler would be a demonstration of a quantum

information processor that can outperform a classical Turing machine.

21

Figure 7: Probability distributions for n = N = 5 and ∣Ψ(α)⟩ = ∣1,1,1,1,1⟩. The MATLAB

function getBiOutputAmps.m was used to generate these probability distributions and

can be found in Appendix C.2. The top plot shows the results generated with all 50-50 beam

splitters and no beam splitters. The bottom plot was generated with a random unitary matrix

for Λ (see Appendix C.4). The state labels along the horizontal axis has been omitted for

clarity. The probabilities are ordered by state left to right using ascending binary order as

described in Appendix B.

22

However, the ideal boson sampler assumes many perfections, but in reality it will suffer

from a multitude of errors. Each photon has to be identical and within a pure Fock state,

the properties of the beam splitters and phase shifters exact, the detectors have to count the

photons without failure, and so on. The issue of timing errors for more than two modes and

two photons, in which the photons do not leave their sources at the same time, are currently

being explored both analytically and within a computer simulation. It is hoped that if

the timing errors are not extreme, then the probability distribution of such a flawed boson

sampler will approach that of the ideal. Studying timing errors in a multi-mode, multi-photon

boson sampler may give insight on how well the device must be controlled in order to ensure

that samples from the interferometer are taken from these probability distributions that are

inefficient for a classical computer to generate. While the boson sampler has potential as a

quantum device, it is not a digital quantum computer and has no form of error correction.

It is hoped that this work will help further the exploration of the computational power of

analog quantum machines and beyond.

Acknowledgments

I would like to express my immense gratitude to Dr. Ivan H. Deutsch and Tyler “Bob” Keat-

ing for their contributions, support, patience and friendship. Thank you for the opportunity

to work with you, the knowledge you have shared with me about such intriguing mysteries,

and the confidence you have instilled in me as I go forward. I would also like to thank my

poor outdated classical computer for burning through countless calculations over and over

and over again without complaining.

References

[1] Aaronson, Scott and Arkhipov, Alex. “The Computational Complexity of Linear Op-

tics.” arXiv:1011.3245 [quant-ph]

[2] Feller, William. An Introduction to Probability Theory. New York: John Wiley & Sons

Inc., 3rd Edition, 1957.

[3] van der Geest, Jos. 2007. PERMPOS MATLAB Central File Exchange. Link to webpage

retrieved April 26, 2014

[4] Hong, Ou and Mandell. “Measurement of Subpicosecond Time Intervals Between Two

photons by Interference.” Physical Review Letters, Vol. 59 No. 18, 1987. pp. 2044-2046

[5] Jerrum, Sinclair, and Vigoda. “A Polynomial-Time Approximation Algorithm for the

Permanent of a Matrix with Nonnegative Entries.” Journal of the ACM, Vol. 51, No.

4, July 2004, pp. 671-697 Link to PDF retrieved April 26, 2014

23

http://arxiv.org/abs/1011.3245
http://www.mathworks.com/matlabcentral/fileexchange/11216-permpos
http://www.mathworks.com/matlabcentral/fileexchange/11216-permpos
http://www.cc.gatech.edu/~vigoda/Permanent.pdf

[6] Kok, Pieter. Image taken from the Wikipedia article Hong-Ou-Mandel effect retrieved

April 26, 2014. Image was unmodified and used under the Creative Commons license.

[7] Medrazzi, Francesco. “How to Generate Random Matrices from the Classical Compact

Groups.” arXiv:math-ph/0609050v2

[8] Nielsen, Michael A. and Chuang, Issac L. Quantum Computation and Quantum infor-

mation Cambridge University Press, 2000

[9] Reck, Zeilinger, Bernstein and Bertani. “Experimental Realization of Any Discrete Uni-

tary Operator.” Physical Review Letters, Vol. 73, No. 1, July 1994, pp 58-62

[10] Ryser, Herbert John. Combinatorial Mathematics. The Carus Mathematical Mono-

graphs, The Mathematical Association of America. 1963.

[11] Scheel, Stefan. “Permanents in Linear Optical Networks.” arXiv:quant-ph/0406127

[12] Tichy, Malte C. “Interference of Idential Particles from Entanglement to Boson-

Sampling.” arXiv:1312.4266v1 [quant-ph]

[13] Valiant, L. G. “The Complexity of Computing the Permanent.” Theoretical Computer

Science Vol. 8, 1979, pp. 189-201. Link to PDF retrieved April 26, 2014

[14] Winslow, Luke. 2012. Matrix Permanent using Ryser Algorithm. MATLAB Central File

Exchange. Link to webpage retrieved April 26, 2014

A Finding Parameters for an Arbitrary Unitary Ma-

trix

The matrix Λ is the product of unitary matrices, and thus is unitary itself. By systematically

adjusting the values for all θ(p,q), ϕ(p,q), and ψk, any arbitrary N ×N unitary matrix may

be constructed. There are 2Z + N = N2 independent parameters, enough to describe any

arbitrary N ×N unitary matrix in this particular basis.

Given an arbitrary unitary transformation Ŝ that acts on the Hilbert space of ∣Ψ(α)⟩ such

that Ŝ ∣Ψ(α)⟩ = ∣Ψ
(α)
out ⟩, the matrix Λ can be found that satisfies Eq. 6. Once Λ is defined, the

N2 number of parameters of all θ(p,q), ϕ(p,q), and ψk can be found that ultimately describe

Λ. Ideally, a system of finely-tuned and carefully placed photon sources, detectors, beam

splitters and phase shifters can serve as an analog machine whose output is taken from the

unique probability distribution of the ideal boson sampler.

To find all N2 rotation angles that define Λ, the following equation taken from the

relationships of Sec. 2.4 can be useful,

24

http://en.wikipedia.org/wiki/Hong-Ou-Mandel_effect
http://en.wikipedia.org/wiki/Hong-Ou-Mandel_effect
http://creativecommons.org/licenses/by-sa/3.0/
http://arxiv.org/abs/math-ph/0609050v2
http://arxiv.org/abs/quant-ph/0406127
http://arxiv.org/abs/1312.4266
http://www.cs.bu.edu/faculty/gacs/courses/cs535/papers/Valiant_permanent.pdf
http://www.mathworks.com/matlabcentral/fileexchange/36224-matrix-permanent-using-ryser-algorithm/content/permanentRyser.m

Y� = [λ(N−1,N)][λ(N−2,N)λ(N−2,N−1)] . . . [λ(1,N)λ(1,N−1) . . . λ(1,3)λ(1,2)]Λ�

= (L(N−1)L(N−2) . . .L(2)L(1))Λ�.
(46)

The result of each λ(p,q) acting on Λ� in the prescribed order of Eq. (46) results in the

diagonal unitary matrix Y�. For p = 1, the N − 1 number of λ(q,1) matrices given by L(1) act

on Λ� first, and only affect the first row (or column) of Λ�. None of the remaining λ(p≠1,q)

in L(p≠1) will act upon the other N − 1 rows or columns (as q never equals one). Thus after

L(1) has been applied in to Λ�, the first row and the first column of the resultant matrix is

identical to the first row and first column of Y�.

The unitary matrices Λ� and Y� can be thought of as a row of orthonormal column

vectors,

Λ� = (∣v1⟩ , ∣v2⟩ , . . . ∣vN⟩) , (47)

and,

Y� = (∣d1⟩ , ∣d2⟩ , . . . ∣dN⟩) . (48)

Using this description, for p = 1,

L(1) ∣v1⟩ = ∣d1⟩ . (49)

The elements of the column vectors ∣dk⟩ have value zero except for the kth element, which

is equal to e−iψk . The action of the unitary matrix L(1) can be seen as rotating the vector

∣v1⟩ into ∣d1⟩ which changes the first element to e−iψ1 and the rest to zero. A similar rotation

occurs if the matrices Λ� and Y� are viewed as stacked orthonormal row vectors, where the

first row vector of Λ� is rotated into the first row vector of Y� by the action of L(1) multiplying

the row vector from the right.

Generalizing, for any p, the matrix L(p) can also be seen as rotations in the complex space

of modes. The outcome of rotations by successive L(p) matrices acting on Λ� is represented

by a new matrix Λ(p). This matrix is also defined when p = 0 as well as for 1 ≤ p ≤ N − 1.

For p = 0, we define Λ(0) = Λ�. For p > 0,

Λ(p) = (L(p)L(p−1) . . .L(2)L(1))Λ(0) = L(p)Λ(p−1). (50)

To help visualize the transformations, let Λ
(p)
sub be a (N − p) × (N − p) unitary submatrix

embedded within the block matrix Λ(p). For p = 0, we define Λ
(0)
sub = Λ(0). To describe Λ

(p)
sub

for p > 0, we regard the placement of this submatrix within the structure of Λ(p) as follows,

25

Λ(p) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e−iψ1 0 ⋯ 0

Ø
0 e−iψ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ e−iψp

Ø
T

Λ
(p)
sub

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (51)

where Ø is a p × (N − p) zero matrix, and ØT is its transpose, a (N − p) × p zero matrix.

For p > 0, the matrix L(p) acting on Λ(p−1) as in Eq. 50 can be regarded as essentially only

transforming Λ
(p−1)
sub while preserving the rest of matrix Λ(p−1). Eq. 51 can be used to help

visualize the results of the transformations as they are sequentially applied.

We can now consider a iterative, algorithmic method for finding the values of θ(p,q) and

ϕ(p,q) that transform Λ� into Y� as in Eq. 46. To begin, we regard any matrix Λ(p) as a row

of column vectors as before in Eq. 47,

Λ(p) = (∣v
(p)
1 ⟩ , ∣v

(p)
2 ⟩ , . . . ∣v

(p)
N ⟩) . (52)

We require L(p) ∣v(p−1)p ⟩ = ∣dp⟩. We start with p = 1 and require as identically shown in Eq.

49,

L(1) ∣v(0)1 ⟩ = (λ(1,N)λ(1,N−1) . . . λ(1,3)λ(1,2)) ∣v
(0)
1 ⟩ = ∣v

(1)
1 ⟩ = ∣d1⟩ . (53)

Delving further into detail, we look at the first rotation when q = 2,

λ(1,2) ∣v(0)1 ⟩ = λ(1,2)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Λ
(0)
1,1

Λ
(0)
2,1

⋮

Λ
(0)
N,1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (54)

As discussed before in Sec. 2.2, the matrix λ(1,2), only acts on the first and second elements

of ∣v
(0)
1 ⟩. We can look at the more interesting 2x2 subspace of Eq. 54:

χ(1,2)
⎛

⎝

Λ
(0)
1,1

Λ
(0)
2,1

⎞

⎠
=
⎛

⎝

eiϕ
(1,2)

cos(θ(1,2)) sin(θ(1,2))

−eiϕ
(1,2)

sin(θ(1,2)) cos(θ(1,2))

⎞

⎠

⎛

⎝

Λ
(0)
1,1

Λ
(0)
2,1

⎞

⎠
=
⎛

⎝

z(1,2)

Λ
(1)
2,1

⎞

⎠
(55)

where z(1,2) is the complex element (1,1) of the new matrix after λ(1,2) has been applied. It

has the form,

z(1,2) = eiϕ
(1,2)

cos(θ(1,2))Λ(0)1,1 + sin(θ(1,2))Λ(0)2,1 . (56)

The matrix λ(1,2) is the only matrix within L(1) that acts on the second element of the

column vector ∣v
(0)
1 ⟩, and so the transformation described in Eq. 55 defines Λ

(1)
2,1 . Referring

to Eq. 53, it is required that the second element of ∣v
(1)
1 ⟩ must equal the second element of

26

∣d1⟩, which is zero. Using these ideas as well as Eq. 55, we can make the important assertion

that,

− eiϕ
(1,2)

sin(θ(1,2))Λ(0)1,1 + cos(θ(1,2))Λ(0)2,1 = Λ(1)2,1 = 0. (57)

From this we can define θ(1,2) and ϕ(1,2),

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

tan (θ(1,2)) = ∣
Λ(0)2,1

Λ(0)1,1

∣

ϕ(1,2) = Arg (Λ
(0)
2,1) −Arg (Λ

(0)
1,1)

. (58)

Once θ(1,2) and ϕ(1,2) are determined, z(1,2) can be calculated using Eq. 56.

Now consider the next matrix, λ(1,3), and the 2x2 subspace associated with it,

χ(1,3)
⎛

⎝

Λ
(0)
1,1

Λ
(0)
3,1

⎞

⎠
=
⎛

⎝

eiϕ
(1,3)

cos(θ(1,3)) sin(θ(1,3))

−eiϕ
(1,3)

sin(θ(1,3)) cos(θ(1,3))

⎞

⎠

⎛

⎝

z(1,2)

Λ
(0)
3,1

⎞

⎠
=
⎛

⎝

z(1,3)

Λ
(1)
3,1

⎞

⎠
=
⎛

⎝

z(1,3)

0

⎞

⎠
. (59)

The new values θ(1,3), ϕ(1,3) and z(1,3) are given by,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan (θ(1,3)) = ∣
Λ(0)3,1

z(1,2) ∣

ϕ(1,3) = Arg (Λ
(0)
3,1) −Arg (z(1,2))

z(1,3) = eiϕ
(1,3)

cos(θ(1,3))z(1,2) + sin(θ(1,3))Λ
(0)
3,1

. (60)

Once θ(1,3), ϕ(1,3), and z(1,3) are discovered in a similar fashion as for the previous un-

knowns, we move onto λ(1,4), and so on. In general, for p = 1 and allowing z(1,1) = Λ
(0)
1,1 , the

following recursive relationships can be developed,

⎛

⎝

eiϕ
(1,q)

cos(θ(1,q)) sin(θ(1,q))

−eiϕ
(1,q)

sin(θ(1,q)) cos(θ(1,q))

⎞

⎠

⎛

⎝

z(1,q−1)

Λ
(0)
q,1

⎞

⎠
=
⎛

⎝

z(1,q)

0

⎞

⎠
, (61)

and,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan (θ(1,q)) = ∣
Λ(0)q,1
z(1,q−1) ∣

ϕ(1,q) = Arg (Λ
(0)
q,1) −Arg (z(1,q−1))

z(1,q) = eiϕ
(1,q)

cos(θ(1,q))z(1,q−1) + sin(θ(1,q))Λ
(0)
q,1

. (62)

It can also be seen that z(1,N) = Λ
(1)
1,1 = e

−iψ1 and therefore,

27

ψ1 = −Arg (z(1,N)) . (63)

We can now work with L(2) acting on Λ(1) by seeing how the elements of the second row

and column of the new Λ(1) matrix are replaced, zero by zero, by the elements of the second

row and column of Y� to make Λ(2). In order to generalize to any values of p and q, we

let the general z(p,q) be the element (p, q) of the resultant matrix after the matrix λ(p,q) has

been applied in the correct sequence. We also define the special case of z(p,q) when p = q

and when p = N , in which case we define z(p,p) as the diagonal (p, p) element of Λ(p−1). In

general, for any λ(p,q), we can find its elements and also the elements of Y with the following

relationships,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan (θ(p,q)) = ∣
Λ(p−1)q,p

z(p,q−1) ∣

ϕ(p,q) = Arg (Λ
(p−1)
q,p) −Arg (z(p,q−1))

z(p,p) = Λ
(p−1)
p,p

z(p,q) = eiϕ
(p,q)

cos(θ(p,q))z(p,q−1) + sin(θ(p,q))Λ
(p−1)
q,p

ψk = −Arg (z(k,N))

. (64)

Thus, starting at p = 1 and q = 2, we can use the recursive, iterative relationships in Eq. 64

to find all the parameters θ(p,q), ϕ(p,q) and ψk that define a given unitary matrix Λ. The

MATLAB function getAngles.m found in the Appendix C.3 takes an arbitrary unitary

matrix and outputs a data structure containing all the angles described in Eq. 64.

B Stars, Bars and Binary Numbers

Using the unique Stars and Bars method detailed by Feller [2], one can derive the dimen-

sionality of the Fock space in equation 2, generate the complete Fock space of a given Fock

state, and assign a unique numeric label to any Fock state.

The Stars and Bars method is used to explore the combinatorics of n balls being sorted

into N walled bins, but this applies easily to the case of photons being sorted into different

modes. Instead of the stars and bars of Feller, we will use binary bits, 1s and 0s. Let the

1s represent the items to be sorted, photons, and 0s represent the figurative walls of the

bins, the spatial modes. We need n total 1s and N − 1 total 0s (as we do not count the

outer walls), and thus a N + n − 1 bit number can represent a Fock state. As an example,

to represent ∣2,0,1⟩, we use the 5-bit binary number 11001, and ∣1,1,1⟩ would be associated

with 10101.

28

By finding all ways to sort the 1s and 0s in an N + n − 1 bit binary number, we arrive

at the dimensionality A by noting that there are (N + n − 1) choose n different ways to sort

n number of 1s and N − 1 number of 0s in an N + n − 1 bit binary number. By generating

all these binary numbers, one can retrieve the entire Fock space of which a given Fock

state is a member. Two MATLAB functions written by van der Geest, permpos.m[3] and

nextpermpos.m, can be useful for finding all permutations of a given binary number.

The binary numbers associated with Fock states can also be converted into decimal

numbers that can be used for compact, easy to read labels for the states ∣Ψ(α)⟩ and ∣Ψ(β)⟩

within a given Fock space that naturally have their own ordering system.

C MATLAB code

This part of the Appendix contains MATLAB code used to simulate the boson sampler and

generate plots. It should be noted that much of the code contains redundant error checking

and the core of most functions are relatively short. However, the entirety of the code is

shown here for the sake of completeness.

C.1 Finding Complex Amplitudes of Output Fock States

The function getScheelMatrix.m takes a unitary matrix and returns another matrix of the

same size modified from the original dependent on the input and output states as described

by Scheel [11].

f unc t i on S = getSchee lMatr ix (B, L ,A)

% getSchee lMatr ix .m c o n s t r u c t s a new matrix as de s c r ibed by Schee l (2 0 0 8) .

% This f u n c t i o n s c r e a t e s a new matrix g iven an input s t a t e in the form o f a

% row vec to r A, and ouput s t a t e B, and the o r i g i n a l matrix L . This new

% matrix i s used to f i n d i t s permanent in order to d e s c r i b e <B |L |A>.

% BEGIN INPUT CHECK

% A and B have to be the same s i z e

[la , NA] = s i z e (A) ;

[lb , NB] = s i z e (B) ;

i f NA ˜= NB

e r r o r (’A and B must be the same s i z e . ’) ;

end

% A and B have to be row v ec to r s

i f l a ˜= 1 | | lb ˜= 1

e r r o r (’A and B must be row v ec to r s ’) ;

end

% A and B have to have the same t o t a l number o f photons

i f sum(A) ˜= sum(B)

29

e r r o r (’A and B must have the same number o f photons . ’) ;

end

N = NA; % s e t N equal to vec to r l ength o f A (same as B’ s) .

% Matrix L has to be a square matrix o f s i z e NxN

[N1 , N2] = s i z e (L) ;

i f N1 ˜= N | | N2 ˜= N

e r r o r (’L must be a square matrix that can mult ip ly A and B ’) ;

end

% Matrix L must be un i tary

% This i s t e s t e d by f i n d i n g L’*L and s e e i n g how c l o s e i t i s to eye (N) ;

t o l = 1e −12; % t o l e r a n c e o f e r r o r check ing

i f max(max(abs (L ’*L − eye (N)))) > t o l

e r r o r (’L must be un i tary ’) ;

end

% END INPUT CHECK

% c r e a t e modi f i ed matrix

mtag = 1 ;

ntag = 1 ;

f o r n=1:N % f i r s t go through each elements o f the A and B v ec to r s

i f A(n) ˜= 0 % i f the re i s a nonzero number o f photons . . .

f o r mp = 1 :A(n) % f o r each photon in t h i s mode . . .

Mrow(mtag) = n ; % we repeat a row index ,

mtag = mtag + 1 ; % and increment the index

end

end

i f B(n) ˜= 0 % same f o r the vec to r A as f o r vec to r B, but . . .

f o r mp = 1 :B(n)

Ncol (ntag) = n ; % we repeat a column index f o r each photon ,

ntag = ntag + 1 ; % and increment the other index .

end

end

end

f o r j = 1 : l ength (Mrow) % f o r each o f the repeated i n d i c i e s . . .

f o r k = 1 : l ength (Ncol)

% S i s c r ea s t ed from L us ing the new i n d i c i e s gathered in to

% Mrow and Ncol .

S (j , k) = L(Mrow(j) , Ncol (k)) ;

end

end

end

30

The function getAmp.m can be used to find the complex amplitude ⟨Ψ(β)∣ Ŝ ∣Ψ(α)⟩. This

code calculates the permanent using permanentRyser.m written by Winslow [14].

f unc t i on amp = getAmp(B, L ,A)

%getAmp .m −− get the complex amplt i tude o f <B |L |A>
% amp = getAmp(B, L ,A) r e tu rn s the complex amplitude o f the ob j e t <B |L |A>
% as r e l a t e d to the problem o f i n d i s t i n g u i s h a b l e boson sampling .

% A i s the N− l ength row vecto r [n1 , n2 , . . . , nN] that r e p r e s e n t s an input

% s t a t e and B i s the N− l ength output s t a t e row vecto r . L must be an NxN

% uni tary matrix . This func t i on makes use o f the func t i on

% permanentRyser .m wr i t t en by Winslow (2 0 1 2) .

% BEGIN INPUT CHECK

% A and B have to be the same s i z e

[la , NA] = s i z e (A) ;

[lb , NB] = s i z e (B) ;

i f NA ˜= NB

e r r o r (’A and B must be the same s i z e . ’) ;

end

% A and B have to be row v ec to r s

i f l a ˜= 1 | | lb ˜= 1

e r r o r (’A and B must be row v ec to r s ’) ;

end

% A and B have to have the same t o t a l number o f photons

i f sum(A) ˜= sum(B)

e r r o r (’A and B must have the same number o f photons . ’) ;

end

N = NA; % s e t N equal to vec to r l ength o f A (same as B’ s) .

% Matrix L has to be a square matrix o f s i z e NxN

[N1 , N2] = s i z e (L) ;

i f N1 ˜= N | | N2 ˜= N

e r r o r (’L must be a square matrix that can mult ip ly A and B ’) ;

end

% Matrix L must be un i tary

% This i s t e s t e d by f i n d i n g L’*L and s e e i n g how c l o s e i t i s to eye (N) ;

t o l = 1e −12; % t o l e r a n c e o f e r r o r check ing

i f max(max(abs (L ’*L − eye (N)))) > t o l

e r r o r (’L must be un i tary ’) ;

end

% END INPUT CHECK

% c a l c u l a t e amplitude us ing the permanent

amp = (1/ s q r t (prod (f a c t o r i a l (B))))* (1 / s q r t (prod (f a c t o r i a l (A)))) * . . .

permanentRyser (getSchee lMatr ix (B, L ,A)) ;

31

% the func t i on getSchee lMatr ix .m c r e a t e s a modi f i ed v e r s i on o f L based on

% the input s t a t e A and the output s t a t e B.

end

C.2 Generating Random Samples from the Boson Sampling Prob-

ability Distribution

The function getBosonSample.m returns a specified number of randomly determined pos-

sible output states ∣Ψ(β)⟩ each weighted by the absolute squares of their amplitudes as calcu-

lated using getAmp.m. The user provides the function with an input state in vector form

and a unitary matrix Λ. It should be noted that once the weights have been calculated over

the entire Fock space, generating random samples from this distribution is trivial.

f unc t i on samples = getBosonSample (Lambda , inputState , numsamples)

% Generates a sample output s t a t e as a boson sampling dev i ce .

% getBosonSample .m takes an NxN uni tary s c a t t e r i n g matrix L and a input

% s t a t e r epr e s en ted by a N− l ength row vecto r and re tu rn s numsamples number

% of samples taken from the p r o b a b i l i t y d i s t r u b t i o n ca l cu ted f o r a boson

% sampling dev i ce .

% BEGIN INPUT CHECKING

t o l = 1e −12; % d e f a u l t t o l e r a n c e

% get the dimentions o f input Lambda , Lambda i s o f s i z e NxM

[N,M] = s i z e (Lambda) ;

% t e s t to see i f Lambda i s square

i f N ˜= M

e r r o r (’ Matrix must be square . ’) ;

end

% t e s t i f Lambda i s a s c a l a r and not a matrix o f at l e a s t 2x2 s i z e

i f N < 2

e r r o r (’ Matrix cannot be a s c a l a r . ’) ;

end

% Finds the l a r g e s t element in Lambda*Lambda ’ − I

% to check i f Lambda i s un i tary

check = max(max(abs (Lambda*Lambda ’ − eye (N)))) ;

% Check to see i f any element ’ s modulus i s l a r g e r than the t o l e r e n c e

i f check > t o l

e r r o r (’ Matrix must be un i tary . ’) ;

end

32

% check to see i f i n p u t s t a t e i s an N− l ength row vecto r

[m, j] = s i z e (inputState) ;

i f j ˜= N

e r r o r (’ Input s t a t e vec to r must the same dimention as Lambda . ’) ;

end

i f m ˜= 1

e r r o r (’ Input s t a t e vec to r must be a row vecto r . ’) ;

end

% check to see i f i n p u t s t a t e has r e a l va lue s

i f ˜ i s r e a l (inputState)

e r r o r (’ Input s t a t e must conta in r e a l nonnegat ive i n t e g e r s . ’) ;

end

% f o r c e i n p u t s t a t e to have nonnegat ive i n t e g e r va lue s

inputState = abs (round (inputState)) ;

% check numsamples

i f ˜ i s r e a l (numsamples) | | numsamples < 1

e r r o r ([’Number o f samples must be a r e a l p o s i t i v e number ’ , . . .

’ g r e a t e r than 0 . ’]) ;

end

% END INPUT CHECKING

n = sum(inputState) ; % get number o f photons

N = length (inputState) ; % get number o f modes

D = N + n − 1 ; % f i n d number o f b i t s needed

A = getBiOutputAmps (Lambda , inputState) ;

% c a l c u l a t e a l l ampl itudes o f each Fock s t a t e in binary form

A = ce l l 2mat (A) ; % convert data s t r u c t to matrix f o r ease o f use .

% the l a s t column w i l l conta in ampl itudes

weights = (abs (A(: , end)) . ˆ 2) ’ ;

% convert ampl itudes to p r o b a b i l i t i e s and make a row vecto r

data = A(: , 1 : end −1) ; % get rows o f binary numbers

data = bi2de (data , ’ l e f t −msb ’) ’ ;

% convert remaining rows o f binary numbers to base −10 in to row vec .

dec imal samples = datasample (data , numsamples , ’ Weights ’ , we ights) ;

% c o l l e c t random samples with nat ive MATLAB func t i on datasample

% convert decimal s t a t e l a b e l s i n to Fock s t a t e s one by one

f o r j =1:numsamples

samples{ j } = sb2Fock (de2bi (dec imal samples (j) ,D, ’ l e f t −msb ’)) ;

end

end

33

The function getBiOutputAmps.m is the workhorse used by getBosonSample.m.

It takes as input a row vector representing the input state and the unitary matrix Λ and

outputs a data structure with each Fock state within the relevant Fock space represented as

binary numbers in ascending order, each with their own corresponding complex amplitude.

As N and n increase, the data structure consumes poorly-scaling memory resources, and the

loop can take unreasonable calculation time to calculate permanents for each member of the

Fock space.

f unc t i on outputData = getBiOutputAmps (Lambda , inputState)

% Returns a data s t r u c t u r e conta in ing a l l memebers o f a Fock space and

% t h e i r r e s p e c t i v e complex ampl itudes in binary ascending order .

% getBiOutputAmps takes the modal s c a t t e r i n g NxN matrix L and an input

% row vec to r o f l ength N and gene ra t e s the complex ampl itudes o f each Fock

% s t a t e in the s c a t t e r e d s u p e r p o s i t i o n . The s t a t e s are conta ined in the

% f i r s t colum o f the data s t r u c t u r e and are arranged in ascending binary

% order . The second colum conta in s the complex amplitudue .

% BEGIN INPUT CHECKING

t o l = 1e −12; % d e f a u l t t o l e r a n c e

% get the dimentions o f input Lambda , Lambda i s o f s i z e NxM

[N,M] = s i z e (Lambda) ;

% t e s t to see i f Lambda i s square

i f N ˜= M

e r r o r (’ Matrix must be square . ’) ;

end

% t e s t i f Lambda i s a s c a l a r and not a matrix o f at l e a s t 2x2 s i z e

i f N < 2

e r r o r (’ Matrix cannot be a s c a l a r . ’) ;

end

% Finds the l a r g e s t element in Lambda*Lambda ’ − I

% to check i f Lambda i s un i tary

check = max(max(abs (Lambda*Lambda ’ − eye (N)))) ;

% Check to see i f any element ’ s modulus i s l a r g e r than the t o l e r e n c e

i f check > t o l

e r r o r (’ Matrix must be un i tary . ’) ;

end

% check to see i f i n p u t s t a t e i s an N− l ength row vecto r

[m, n] = s i z e (inputState) ;

i f n ˜= N

e r r o r (’ Input s t a t e vec to r must the same dimention as Lambda . ’) ;

end

i f m ˜= 1

34

e r r o r (’ Input s t a t e vec to r must be a row vecto r . ’) ;

end

% check to see i f i n p u t s t a t e has r e a l va lue s

i f ˜ i s r e a l (inputState)

e r r o r (’ Input s t a t e must conta in r e a l nonnegat ive i n t e g e r s . ’) ;

end

% f o r c e i n p u t s t a t e to have nonnegat ive i n t e g e r va lue s

inputState = abs (round (inputState)) ;

% END INPUT CHECK

% generate a l l members o f the Fock space g iven the input

FockSpace = getBiFockSpace (inputState) ;

% get the d iment i ona l i t y A o f the Fock Space .

[A, x] = s i z e (FockSpace) ;

% c a l c u l a t e complex amplitude f o r each member o f the space

f o r a = 1 :A

outputData{a ,1} = FockSpace (a , :) ;

% Fock s t a t e s to r ed in f i r s t column

outputData{a ,2} = . . .

getAmp(sb2Foch (FockSpace (a , :)) , Lambda , inputState) ;

% amplut ides s t o r e in second column

% sb2Fock conver t s the binary number in to a Fock s t a t e us ing

% the ” s t a r s and bars ” method .

end

end

The function getBiFockSpace returns a matrix whose rows contain each member of a

Fock space in binary form given a starting Fock state. It uses the “stars and bars” method

detailed by Feller [2] and discussed in Appendix B. The function permpos.m written by

van der Geest [3] is used to find all permutations of the different ways to sort n photons into

N modes.

f unc t i on FockSpace = getBiFockSpace (v)

% return the e n t i r e Fock space g iven an input row vecto r v

% getBiFockSpace r e tu rn s the e n t i r e Fock space that the s t a t e r epr e s en ted

% by the row−vec to r v i s a member . Each s t a t e i s converted in to a binary

% number and are arranged in ascending order by the value o f the

% correspond ing binary number . This func t i on makes use o f permpos .m

% wr i t t en by van der Geest (2 0 0 7) .

% BEING INPUT CHECK

% check to see i f i n p u t s t a t e i s an N− l ength row vecto r

[m, nv] = s i z e (v) ;

i f m ˜= 1 | | nv < 2

e r r o r ([’ Input s t a t e vec to r must be a row vecto r with at ’] , . . .

35

[’ l e a s t 2 e lements ’]) ;

end

% check to see i f i n p u t s t a t e has r e a l va lue s

i f ˜ i s r e a l (v)

e r r o r (’ State vectormust conta in r e a l nonnegat ive i n t e g e r s . ’) ;

end

% f o r c e i n p u t s t a t e to have nonnegat ive i n t e g e r va lue s

v = abs (round (v)) ;

% END INPUT CHECK

n = sum(v) ; % f i n d number o f photons

N = length (v) ; % f i n d number o f modes

D = N + n − 1 ; % f i n d number o f b i t s needed

FockSpace = de2bi (s o r t (bi2de (permpos (n ,D) , ’ l e f t −msb ’)) , ’ l e f t −msb ’) ;

% F i r s t f i n d s a l l permutat ions o f ” s t a r s and bars ” us ing permpos .m, then

% conver t s the se binary numbers to decimals , s o r t s them in ascending order ,

% then r e conve r t s them back to binary numbers f o r output .

end

The function sb2Fock.m takes a vector containing a binary number that represents the

“stars and bars” and converts it to a vector that represents a Fock state. For instance, it

converts the vector [0,1,0,1,1] into [0,1,2].

f unc t i on vp = sb2Fock (v)

% conver t s a vec to r contaning b i t s o f a binary number in to a Fock s t a t e .

% sb2Fock .m takes a vec to r conta in ing b i t s o f a binary number and conver t s

% i t i n to another vec to r that r e p r e s n t s a Fock s t a t e . The not ion o f

% conver t ing a Fock s t a t e to a binary number i s taken from the ” s t a r s and

% bars ” method developed by F e l l e r (1 9 5 7) .

D = length (v) ; % get the b i t l ength

n = sum(v) ; % f i n d the t o t a l number o f photons

N = D − n + 1 ; % f i n d the number o f modes

vp = ze ro s ([1 ,N]) ; % s t a r t with an N− l ength row vecto r o f a l l z e r o s

k = 1 ; % current index to be incremented

% go through a loop examining each b i t

f o r d=1:D

i f v (d) == 0 % i f the re i s a ” wa l l ” , . . .

k = k + 1 ; % don ’ t add a photon and keep going

e l s e i f v (d) == 1 % i f the re i s a photon in t h i s b i t , . . .

vp (k) = vp (k) + 1 ; % add i t to the cur rent ”bin , ” or mode

e l s e

e r r o r (’ I n v a l i d vec to r ! ’) ;

% g i v e s an e r r o r i f any element o f the vec to r i s not a 0 or 1 .

end

end

36

end

C.3 Finding Angles that Describe an Arbitrary Unitary Matrix

The MATLAB function getangles.m accepts a unitary matrix as input and returns a data

structure that contains the angles that describe beam splitters and phase shifters that could

be arranged in a boson sampler that would scatter the photon modes as described by the

original input matrix.

f unc t i on A = getAngles (Lambda)

% The func t i on getAngles takes an a r b i t r a r y un i tary matrix Lambda and

% re tu rns the data s t r u c t u r e A that conta in s the c a l c u l a t e d ang l e s .

% The elements {p , q} o f the data s t r u c t u r e A conta in a two element vec to r

% [theta , phi] that conta in the va lue s o f the ang l e s at the po int {p , q } .

% The element {1 ,1} o f A conta in s the d iagona l Y matrix .

t o l = 1e −12; % d e f a u l t t o l e r a n c e

% get the dimentions o f input Lambda , Lambda i s o f s i z e NxM

[N,M] = s i z e (Lambda) ;

% t e s t to see i f Lambda i s square

i f N ˜= M

e r r o r (’ Matrix must be square . ’) ;

end

% t e s t i f Lambda i s a s c a l a r and not a matrix o f at l e a s t 2x2 s i z e

i f N < 2

e r r o r (’ Matrix cannot be a s c a l a r . ’) ;

end

% Finds the l a r g e s t element in Lambda*Lambda ’ − I

% to check i f Lambda i s un i tary

check = max(max(abs (Lambda*Lambda ’ − eye (N)))) ;

% Check to see i f any element ’ s modulus i s l a r g e r than the t o l e r e n c e

i f check > t o l

e r r o r (’ Matrix must be un i tary . ’) ;

end

% Lp i s equal to the t ranspose conjugate o f o r i g n a l un i ta ry matrix f o r

% the f i r s t step , i t w i l l be run through the loop to e x t r a c t

% the r o t a t i o n m a t r i c i e s from Lambda .

Lp = Lambda ’ ;

% Ltes t i s used to check i f the generated matr i ce s m u l t i p l i e d by

% themse lves in order y i e l d back the o r i g n a l matrix Lambda .

Ltes t = eye (N) ;

37

% begin main loop f o r gene ra t ing lambda with i n d i c e s p , q

% 1 <= p <= q − 1 , 2 <= q <= N

f o r p = 1 :N−1

f o r q = p+1:N

z pp = Lp(p , p) ; % s e t va lue s f o r z pp and z pq

z pq = Lp(q , p) ;

% us ing equat ion f o r theta :

theta = atan (abs (z pq / z pp)) ;

% us ing equat ion f o r phi :

phi = angle (z pq)− ang le (z pp) ;

% ad ju s t i ng ange l s f o r ease o f read ing

i f theta > 2* pi

theta = theta − 2* pi ;

end

i f theta < −2*pi

theta = theta + 2* pi ;

end

i f phi > 2* pi

phi = phi − 2* pi ;

end

i f phi < −2*pi

phi = phi + 2* pi ;

end

% makeX c r e a t e s the Chi matrix f o r g iven ang l e s f o r t e s t i n g

X = makeX(N, [p , q] , [theta , phi]) ;

% Mult ip ly Lp by lambda in order to f i n d new z , and to ensure

% accuracy o f the method (i . e . the c o r r e c t e lements are s e t to

% zero) .

Lp = X*Lp ;

% z pp = Lp(p , q) ;

% Error check ing by mul t ip ly ing a l l the Lambdas by each other

% in order to see i f we can r e c r e a t e the o r i g i n a l U

Ltes t = X*Ltes t ;

A{p , q} = [theta , phi] ;

% s t o r e theta and phi in the {p , q} element o f the output data

% s t r u c t u r e A

end

end

Y = conj (Lp) ;

% the d iagona l Y matrix i s the conjugate o f the l a s t matrix

A{1 ,1} = Y;

% the element {1 ,1} o f the output data s t r u c t u r e conta in s the Y matrix

Ltes t = Y*Ltes t ; % Fina l ly , multply the l a s t Lte s t matrix by Y.

38

% check to see i f Utest i s the same as the o r i g n a l U matrix

check2 = max(max(abs (Lte s t − Lambda))) ;

% I f Utest i s not the same as the o r i g n a l U with in the to l e rance , then

% the f u c t i o n s r e tu rn s an e r r o r message

i f check2 > t o l

d i sp (’ Algorithm f a i l e d ! ’) ;

end

end

The function makeX.m is a simple function that constructs a particular χ(p,q) matrix

given N,p, q, θ(p,q) and ϕ(p,q). It is used within getAngles.m for error checking.

f unc t i on X = makeX(N, index , ang l e s)

% This func t i on r e tu rn s an NxN matrix X construced from an i d e n t i t y matrix

% with the (p , p) , (p , q) , (q , p) and (q , q) e lements r ep laced with va lue s

% determined by [theta , phi] taken from the ang l e s input . The i n d i c e s [p , q]

% are conta ined with in the index input .

% d e f i n e p , q , th and phi from the inputs

p = index (1) ;

q = index (2) ;

th = ang l e s (1) ;

phi = ang l e s (2) ;

% check to see i f p and q are v a l i d i n d i c i e s

i f p >= q

e r r o r (’ Index ’ ’p ’ ’ must be l e s s than index ’ ’ q ’ ’ . ’) ;

end

i f p >= N | | q > N

e r r o r (’ I n v a l i d i n d i c i e s . ’) ;

end

% s t a r t i n g with the NxN i d e n t i t y matrix

X = eye (N) ;

% r e p l a c e e lements o f X depending on th and phi

X(p , p) = exp (i *phi)* cos (th) ;

X(p , q) = s i n (th) ;

X(q , p) = −exp (i *phi)* s i n (th) ;

X(q , q) = cos (th) ;

end

39

C.4 Generating Random Unitary Matrices

The function getMedrazzi.m generates a random unitary matrix taken from the Haar

measure following the method described by Medrazzi [7].

f unc t i on U = getMedrazzi (N)

% Return a random NxN uni tary matrix taken from the Haar measure

% This func t i on takes the input N and re tu rn s a random uni tary NxN matrix

% taken from the Haar measure as de s c r ibed by Medrazzi 2007 . The document

% can be found at : http :// arx iv . org /abs/math−ph/0609050

% step #1, p . 11

A = (1/ s q r t (2))* (rand (N) + i * rand (N)) ; % A i s random normal complex matrix

% step #2

[Q,R] = qr (A) ; % Q and R matr i ce s from QR decomposit ion

% step #3

D = eye (N) ;

f o r n=1:N

D(n , n) = R(n , n)/ abs (R(n , n)) ;

% s e t d iagona l e lements to normal ized d iagona l e lements o f R

end

% step #4

U = Q*D; % U i s the f i n a l random uni tary matrix

end

40

	Introduction
	Foundations
	Scattering Matrix Transformation of Modes
	Transformations at the Crossing Points
	Transformations After Crossing Points
	Complete Transformations on All Modes
	Interference Between Two Indistinguishable Photons
	Output State Probabilities
	The Classical Analog, Distinguishable Photons and the Permanent
	Indistinguishable Bosons and the Permanent

	Predicting Output Possibilities
	Simulations
	Using the Permanent

	Results
	Computation Times and Probability Distributions
	Discussion

	Outlook
	Finding Parameters for an Arbitrary Unitary Matrix
	Stars, Bars and Binary Numbers
	MATLAB code
	Finding Complex Amplitudes of Output Fock States
	Generating Random Samples from the Boson Sampling Probability Distribution
	Finding Angles that Describe an Arbitrary Unitary Matrix
	Generating Random Unitary Matrices

