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Abstract

Calculated optimal quantum measurements are often very challenging to perform in real life

because of the inherent difficulty in constructing an optimum superposition-state measure-

ment basis. This thesis demonstrates the viability of employing real-time quantum feedback

to physically achieve an optimal measurement. During a simple binary state discrimination

process, coherent optical quantum states are displaced according to an optimal feedback so-

lution. The resulting probability of measurement error beats that of merely photon counting,

called the shotnoise limit, and approaches the true limit imposed by quantum mechanics,

discovered by Helstrom more than thirty years ago.

Publications resulting from this work:

• “Optical coherent state discrimination using a closed-loop quantum measurement,”

Robert L. Cook, Paul J. Martin, and JM Geremia, Nature, 446, 774-777 (2007).
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Chapter 1

Introduction

A convenient way to think about quantum mechanics is as an information science. From this

frame of mind, admitting fundamental quantum properties, such as uncertainty principles

and invasive measurements, amounts to understanding that complete knowledge of a quan-

tum system is often unattainable [1, 2]. We are limited in our understanding of a quantum

system or state for various reasons, but a particularly interesting source of our ignorance

is the invasive nature of measurements. From an information perspective, a measurement

is any process that allows a gain in knowledge. During the process of a measurement,

seemingly delicate quantum states are altered in a nondeterministic, irreversible manner [3].

This means that we cannot repeatedly measure a state to learn everything there is to know

about it; if we are given a single copy of a quantum system and the goal to determine its

state as accurately as possible, we only have one chance to expand our knowledge through

measurement [4].

1.1 Motivation

In quantum mechanics, a fundamental problem lies in extracting information contained in a

quantum state. A simple first step in this process is to identify an unknown state, or, more

specifically, to distinguish between quantum states [5].

We can try to do this through measurement, but, since the information gain enabled by

quantum measurement is limited, we need to employ the best possible measurement [1, 6].
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1.2. QUANTUM STATES

When attempting to learn about a quantum system, it is usually possible to optimize over

the set of feasible quantum measurements. However, the result is usually very difficult, and

often nigh impossible, to implement in real life [7, 8].

This thesis is about finding and implementing an alternative way to perform optimal

quantum measurements, where information gain remains maximized and physical realization

becomes viable. We use the concept of performing feedback [9, 10, 11, 12, 13] on a quantum

system while it is being measured.

1.2 Quantum States

A quantum state |ψ〉 can conveniently be thought of as a collection of information about

a quantum system. A state vector is represented by a superposition of orthogonal basis

vectors,

|ψ〉 =
N∑

i=1

ci|φi〉, such that
N∑

i=1

|ci|2 = 1. (1.1)

The statement that the squared complex coefficients add to one is equivalent to saying

|ψ|2 = 1, which is a normalized probability distribution. Indeed, seeing that |ψ〉 is nearly a

probability distribution helps us to understand it a little better—it is a mathematical object

that can be used to calculate the probabilities of measurement outcomes. The normalization

condition is simply the statement that when |ψ〉 is measured, an outcome must occur.

Since |ψ〉 can be decomposed into orthogonal basis vectors, it is called a pure state. Often,

however, a quantum state can be a statistical mixture of pure states. This mixed state is

given by the density operator,

ρ̂ =
N∑

i=1

ci|ψi〉〈ψi|. (1.2)

The condition of normalization applies to this form of a quantum state as well, trρ̂ = 1.

In the absence of a measurement, the quantum state of a system evolves deterministically

according to a smooth, unitary operator Û(t). For pure states, this evolution has the form

|ψ(t)〉 = Û(t)|ψ(0)〉, where Û(t) = e−iĤt/~; (1.3)
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1.3. QUANTUM MEASUREMENTS

while for density operators,

ρ̂(t) = Û †(t) ˆρ(0)Û(t) (1.4)

This evolution is simply the dynamics that derive from the time-dependent Schrödinger

equation. The transformation performed on quantum state |ψ(0)〉 by Û(t) is reversible

since Û †(t)Û(t) = 1̂. Because of these properties of unitary evolution, quantum states are

classically well-behaved until a measurement is made.

1.3 Quantum Measurements

When a measurement is made on a quantum state, the state changes in a way that is

not deterministic. Quantum state reduction, sometimes called the “collapse of the wave

function,” is the process by which an initial quantum state |ψ(0)〉 is transformed to its post-

measurement state |ψ′〉. Outcomes of measurements are random, but follow the probability

distribution contained in a quantum state.

1.3.1 Projective Measurements

The most simple treatment of measurement, and the one typically learned in any under-

graduate course in quantum mechanics, is to associate a Hermitian operator M̂ = M̂ † with

every physical observable of the system. All Hermitian operators can be expressed in terms

of their spectral decomposition,

M̂ =
N∑

i=1

λi|mi〉〈mi|, (1.5)

where the λi are the possible measurement outcomes for the physical observable associated

with the operator Â. The measurement outcomes λi and their associated kets |mi〉 are

eigenvalues and eigenvectors, respectively,

M̂ |mi〉 = λi|mi〉. (1.6)

The invasive property of quantum measurements is treated by conditioning the state of

the quantum system on the outcome of the measurement using projection operators. Each
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1.3. QUANTUM MEASUREMENTS

projector is an outer product of its corresponding eigenvector with itself, Pi = |mi〉〈mi|.

Projectors are complete,
N∑

i=1

Pi = 1, (1.7)

and are required to be both idempotent and orthogonal,

P2
i = Pi and PiPj = δij. (1.8)

Thus, projectors correspond to mutually exclusive measurement outcomes.

According to standard quantum mechanics, a measurement corresponds to projecting the

quantum state vector |ψ〉 just prior to the measurement onto the eigenbasis of the operator

M̂ . A projective measurement leaves the quantum state of a system in the eigenstate of the

operator corresponding to the measurement eigenvalue obtained

|ψ〉 7→ |ψ′〉 =
Pi√

〈ψ|Pi|ψ〉
|ψ〉. (1.9)

If measured again, the outcome will remain in the same eigenstate, which means that com-

plete information is gained.

The probability to measure a quantum state |ψ〉 and observe the outcome λi is given by

the Born rule,

P(λi) = |〈ψ|mi〉|2 = 〈ψ|Pi|ψ〉. (1.10)

The projector Pi is the observable that corresponds to how likely it is that performing a

measurement of M̂ will produce the outcome λi.

1.3.2 Positive Operator Valued Measures

More general than projective measurements, positive operator valued measures (POVMs)

are not necessarily projective. They are partial measurements that are not required to leave

the state of the quantum system in an eigenstate of the measurement.

A POVM consists of a complete set of operators that are unlike projectors in that they

are not necessarily orthogonal [14, 15]:

M≡ {M1,M2, . . . ,MN} . (1.11)
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1.3. QUANTUM MEASUREMENTS

Each Mi is associated with a measurement outcome i. If N is the number of possible

measurement outcomes, then N operators are needed to form a complete POVM. However,

since orthogonality is not required, more than N operators may exist in a POVM.

POVMs are the most general class of measurements allowed by quantum mechanics; if a

measurement is to be considered allowable, it must meet a few requirements. First, all Mi

components must be strictly positive,

Mi ≥ 0 ∀Mi. (1.12)

This is the condition for the “positive” part of the acronym; it means both that the eigenval-

ues of the Mis are nonnegative and that they take positive operators to positive operators.

An operator with negative eigenvalues is not considered valid because this implies negative

probabilities, which is absurd.

Second, the components must be complete, that is

N∑
i=1

Mi = 1. (1.13)

This ensures that M takes normalized states to normalized states, a statement of the con-

servation of probability, or, equivalently, the trace of the density matrix. If the elements did

not resolve the identity, then some measurement outcome would be unaccounted for.

These two requirements ensure that M takes a valid density operator to another valid

density operator. Combined, they are the most general requirements for a process that is

allowed by quantum mechanics. POVMs, therefore, are the most general class of allowable

quantum measurements.

The “measure” part has to do with probability—the probability to observe the outcome

corresponding to the ith element of M is given by

P(i) = tr[Miρ̂]. (1.14)

1.3.3 Continuous Quantum Measurement and Feedback

Another type of measurement, which will play an important role in this thesis, involves

observation and manipulation of a system as it is being measured. This combines unitary
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1.4. QUANTUM HYPOTHESIS TESTING

evolution of the quantum state with a measurement conditioning on the same time scale—

called a continuous quantum measurement [9, 13, 16, 17]. The basic idea is to drive the

dynamics of the system over small time increments. In this process, an initial quantum state

is transformed into its new form by

|ψ(t)〉 = lim
n→∞

[
MnÛn(δt)Mn−1Ûn−1(δt)× · · · ×M2Û2(δt)M1Û1(δt)

]
|ψ(0)〉, (1.15)

where δt = τ/n. In the continuous limit,

|ψ(t)〉 = MtÛt(δt)Mt−dtÛt−dt(dt)× · · · ×M2dtÛ2dt(dt)MdtÛdt(dt)|ψ(0)〉. (1.16)

The outcome of the continuous measurement is called the measurement record and consists

of the full history of measurement data obtained at each point in time

Ξ[0,t] = (λt, λt−dt, . . . , λ2dt, λdt) (1.17)

This history is on the same time scale as measurements performed on the quantum system.

This mixes up the two traditionally separate roles of smooth evolution according to the

Schrödinger equation and nondeterministic measurement.

The idea behind quantum feedback control is that the evolution at a given point in time

Ût(dt) can be made to depend upon the measurement history Ξ[0,t) prior to time t. In this

way, it is possible to exert control over the statistics of the continuous measurement.

1.4 Quantum Hypothesis Testing

Often, we want to ask a question about a quantum state and attempt to answer this question

after making some sort of measurement. A hypothesis testing procedure is simply the process

of associating a guess with a possible measurement outcome [4]. Suppose there areN different

guesses that can be made. Our set of hypotheses is

H = {H1,H2, . . . ,HN} . (1.18)

If we guess Hi, what is the chance that our hypothesis is right? It makes more sense to

think about the chance of it being wrong—the probability of error. The probability of error
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1.4. QUANTUM HYPOTHESIS TESTING

is simply

PE =
∑
i6=j

P (Hi|Hj)P (Hj) . (1.19)

The conditional probabilities P (Hi|Hj) refer to the chance that we select Hi when Hj was

correct. They are weighted in the sum by the probability that Hj was right in the first place.

This possibility of error can be calculated explicitly when defined measurement outcomes

are associated with the hypotheses. Quantum hypothesis testing can be considered for a wide

variety of inquiries, but this paper is only concerned with the question of state discrimination.

1.4.1 State Discrimination

The question of quantum state discrimination is easily posed. Suppose a quantum state is

secretly prepared into one of a set of N possible candidate states. Now, which state is it?

The list of candidate states is referred to as an alphabet,

A = (ρ̂1, ρ̂2, . . . , ρ̂N) , (1.20)

and we define our hypothesis Hi to correspond to ith element of this list, ρ̂i.

In addition to the alphabet, we are provided with a complete set of a priori probabilities.

P (ρ̂i) = pi ,
N∑
i

pi = 1 (1.21)

Thus, the probability of error is easily calculable:

PE =
∑
i6=j

P (Hi|ρ̂j) pj. (1.22)

If we want to have the greatest chance of being correct (suppose we win a substantial

prize if we are right), then we need to minimize this decisional error [1, 5]. We can do this by

choosing the measurement we make before selecting our hypothesis; to truly minimize this

error, we allow our measurement to take on the general form of a POVM. This is explored

in detail in the following pages for the binary case of state discrimination, N = 2.
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Chapter 2

Binary Optical State Discrimination

In the binary case of state discrimination, we are provided with a list of two unique candidate

states that are not necessarily orthogonal. Our alphabet is then given by

A = {ρ̂1, ρ̂2}. (2.1)

We will be given a state that has been chosen from this alphabet according to a probability

distribution that is also available to us:

p = {p1, p2}, p1 + p2 = 1. (2.2)

Thus, we know that the unknown provided state can be either ρ̂1 or ρ̂2, and the likelihood of

being in each state is p1 or p2, respectively. The objective is to use this a priori knowledge

to best determine which state was actually given to us. We are allowed to do anything we

want to the state to better determine which candidate state it is; the preservation of the

provided state is not considered important in this problem because we are only concerned

with identifying it [5].

2.1 Probability of Error

After we have played with the state, presumably by a measurement of some sort, we use our

new knowledge of the system to guess which state we were given. Elements in our set of

hypotheses [4, 5],

H = {H1,H2}, (2.3)
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2.1. PROBABILITY OF ERROR

correspond to the two candidate states. A guess is made and can easily be evaluated as

either right or wrong: When we choose the state that was not provided, we say that an error

occurs—expressed conveniently by the conditional probabilities

P(H2|ρ̂1) and P(H1|ρ̂2). (2.4)

The total probability of error, according to Eq. (1.19), is found by simply weighting these

conditional probabilities with their a priori probabilities and adding them together according

to Bayes’ rule:

PE = P(H2|ρ̂1)p1 +P(H1|ρ̂2)p2. (2.5)

Clearly, obtaining the best chance of selecting the correct state amounts to minimizing the

above probability of error. This is not to difficult to do, but some more machinery is required.

As indicated above, we will attempt to attain more information about the mystery state

by performing some sort of measurement. The outcome of our measurement leads to the

hypothesis H1 or H2. Because we want to see how well we can do in principle, we consider

the most general class of allowable measurements in quantum mechanics: POVMs. Since

two outcomes are possible, a two-component POVM is sufficient as the general form of

measurement:

M = {M1,M2}. (2.6)

In order to be an allowable quantum measurement, the matrices M1 and M2 are required

to be both complete and positive,

M1 + M2 = 1, Mi ≥ 0 ∀Mi. (2.7)

Our hypothesis testing procedure is the following: When the measurement outcome cor-

responds to M1, we choose hypothesis H1, and we make a similar conclusion in the opposite

measurement outcome. We can now express the probability of error in Eq. (2.5) in a more

useful form, where the conditional probabilities are rewritten using elements of our POVM.

Also applying the fact that M1 and M2 resolve the identity, we can make the following

simplifications:

PE = P(H2|ρ̂1)p1 +P(H1|ρ̂2)p2

14



2.1. PROBABILITY OF ERROR

= tr[M2ρ̂1]p1 + tr[M1ρ̂2]p2

= tr[(1−M1)ρ̂1]p1 + tr[M1ρ̂2]p2

= p1 − tr[M1ρ̂1]p1 + tr[M1ρ̂2]p2

= p1 + tr[M1ρ̂2p2 −M1ρ̂1p1]. (2.8)

Thus, the probability of error is simply

PE = p1 + tr[M1Γ̂], where Γ̂ = p2ρ̂2 − p1ρ̂1. (2.9)

Since Γ̂ is a linear combination of Hermitian density operators, it is itself Hermitian. This

means we can consider its spectral decomposition, given by breaking Γ̂ apart into its eigen-

values and their associated projectors:

Γ̂ =
∑

j

γj|j〉〈j|, Γ̂|j〉 = γj|j〉. (2.10)

Now,

tr[M1Γ̂] =
∑

i

∑
j

γj〈i|M1|j〉〈j|i〉 (2.11)

=
∑

j

γj〈j|M1|j〉. (2.12)

Since 0 ≤ M1 ≤ 1, as required by the definition of the POVM, we can say that the above

trace is bounded below by the sum of its negative eigenvalues,

tr[M1Γ̂] ≥
∑
γj≤0

γj. (2.13)

In this instance, Γ̂ is neither positive- nor negative-definite because −1 ≤ Γ̂ ≤ 1. More

specifically, there are two eigenvalues, one positive and one negative. Thus, we can say that

the value of the trace has a minimum that is equal to γ−, the negative eigenvalue of Γ̂. Now,

our probability of error has a lower bound—exactly the minimization we were seeking:

PE = p1 + tr[M1Γ̂] (2.14)

≥ p1 + γ−. (2.15)

In the case where PE = p1 + γ−, we have reached the quantum limit for probability of error,

sometimes referred to as the Helstrom bound, pH . We reach this minimum when we choose

15



2.1. PROBABILITY OF ERROR

the correct basis in which to measure. We, therefore, choose M1 such that it corresponds

with the eigenvector associated with γ−:

M1 = |−〉〈−|, where Γ̂|−〉 = γ−|−〉. (2.16)

2.1.1 Derivation of the Quantum Error Limit

In order to find an explicit representation of pH , that is to say a closed form expression, it is

necessary to consider the case where ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2| [5]. In this pure state

configuration, we simply need to find the negative eigenvalue of

Γ̂ = p2ρ̂2 − p1ρ̂1 (2.17)

= p2|ψ2〉〈ψ2| − p1|ψ1〉〈ψ1|. (2.18)

It would be convenient to express Γ̂ as a matrix; however, we should remember that

|ψ1〉 and |ψ2〉 are not necessarily orthogonal. We can use our state vectors to construct an

orthonormal basis through the method of Gram-Schmidt orthogonalization. Keeping |ψ1〉 in

our new basis, the un-normalized orthogonal state |ξ⊥〉 is given by

|ξ⊥〉 = |ψ2〉 −
〈ψ1|ψ2〉
〈ψ1|ψ1〉

|ψ1〉. (2.19)

After normalizing |ξ⊥〉 we get |ψ⊥1 〉, and our new orthonormal basis is complete:

|ψ1〉 = |ψ1〉, |ψ⊥1 〉 =
|ψ2〉 − |ψ1〉〈ψ1|ψ2〉√

1− |〈ψ1|ψ2〉|2
. (2.20)

Let’s expand Γ̂ in this new basis by calculating |ψ2〉〈ψ2|. In doing this, let α =
√

1− |〈ψ1|ψ2〉|2

so that |ψ2〉 = α|ψ⊥1 〉 + |ψ1〉〈ψ1|ψ2〉. Remembering that |〈ψ1|ψ2〉|2 + |〈ψ⊥1 |ψ2〉|2 = 1, the al-

gebra is straightforward:

|ψ2〉〈ψ2| = |α|2|ψ⊥1 〉〈ψ⊥1 |+ α∗〈ψ1|ψ2〉|ψ1〉〈ψ⊥1 |

+α〈ψ2|ψ1〉|ψ⊥1 〉〈ψ1|+ |〈ψ1|ψ2〉|2|ψ1〉〈ψ1| (2.21)

=

(
|〈ψ1|ψ2〉|2 α∗〈ψ1|ψ2〉
α〈ψ2|ψ1〉 |α|2

)
(2.22)

=

(
|〈ψ1|ψ2〉|2 〈ψ1|ψ2〉〈ψ⊥1 |ψ2〉

〈ψ1|ψ2〉〈ψ2|ψ⊥1 〉 |〈ψ⊥1 |ψ2〉|2
)
. (2.23)
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2.1. PROBABILITY OF ERROR

Thus, we can write Γ̂ as

Γ̂ =

(
p2|〈ψ1|ψ2〉|2 − p1 p2〈ψ1|ψ2〉〈ψ⊥1 |ψ2〉
p2〈ψ1|ψ2〉〈ψ2|ψ⊥1 〉 p2|〈ψ⊥1 |ψ2〉|2

)
. (2.24)

In order to find the negative eigenvalue of Γ̂, we observe that trΓ̂ = p2 − p1 and detΓ̂ =

−p1p2|〈ψ⊥1 |ψ2〉|2 and utilize a handy formula for computing eigenvalues of a two-by-two

matrix,

γ± =
1

2

(
trΓ̂±

√
(trΓ̂)2 − 4detΓ̂

)
(2.25)

=
1

2

(
p2 − p1 ±

√
(p2 − p1)2 + 4p1p2|〈ψ⊥1 |ψ2〉|2

)
. (2.26)

Now use the statement of probability, p1 + p2 = 1, to simplify further

γ± =
1

2

(
1− 2p1 ±

√
1− 4p1 + 4p2

1 + 4p1p2|〈ψ⊥1 |ψ2〉|2
)

(2.27)

=
1

2

(
1±

√
1− 4p1 + 4p1 − 4p1p2 + 4p1p2|〈ψ⊥1 |ψ2〉|2

)
− p1 (2.28)

=
1

2

(
1±

√
1− 4p1p2(1− |〈ψ⊥1 |ψ2〉|2

)
− p1 (2.29)

=
1

2

(
1±

√
1− 4p1p2|〈ψ1|ψ2〉|2

)
− p1. (2.30)

So, with our a priori knowledge of the binary state discrimination problem, we can

explicitly compute our probability of error in the best possible case—as good as allowed by

quantum mechanics. This is our important result:

pH = p1 + γ− =
1

2

(
1−

√
1− 4p1p2|〈ψ1|ψ2〉|2

)
. (2.31)

An additional interesting calculation can be made: the optimum basis for measurement.

This is γ−’s associated eigenvector |−〉, discussed earlier. Plugging directly into the eigen-

value equation Γ̂|−〉 = γ−|−〉 and solving for |−〉 proves ugly, but is simplified greatly by

assuming a priori probabilities p1 = p2 = 1
2
. This equal probability case is actually very

interesting because it has the highest probability of error as well as the highest potential

to communicate information [2]. With this simplification, the un-normalized eigenvector is

given by

|−〉 =

(
2〈ψ1|ψ2〉 −

〈ψ1|ψ2〉√
1− |〈ψ1|ψ2〉|2

)
|ψ1〉+

(
1−

√
1− |〈ψ1|ψ2〉|2√

1− |〈ψ1|ψ2〉|2

)
|ψ2〉. (2.32)
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2.2. APPLICATION TO OPTICAL COHERENT STATES

2.2 Application to Optical Coherent States

An important example of a binary state discrimination situation, and the one considered

in this thesis, involves optical coherent states of the electromagnetic field [18]. The theory

of quantum electrodynamics tells us that a monochromatic optical field, with a well-defined

wavevector ~k, can be treated as a harmonic oscillator with the Hamiltonian

Ĥ = ~ω
(
â†â+

1

2

)
, (2.33)

where ω = c|~k| is the optical frequency. The field creation operator â† increases the number

of quanta (photons) of electromagnetic energy in the optical mode by ∆E = ~ω. Conversely,

the field annihilation operator â reduces the energy by one photon. Quantum uncertainty

in the electromagnetic field, in analogy to the harmonic oscillator, results from the fact that

the creation and annihilation operators satisfy a canonical commutation relation [â, â†] = 1.

Energy eigenkets of the single-mode Hamiltonian span Fock space and are called number

states or, appropriately, Fock states.

Ĥ|n〉 = En|n〉, En = ~ω
(
n+

1

2

)
, n = 0, 1, 2, 3, . . . (2.34)

These can be viewed as states of the field where the energy—and therefore the number of

photons—is known with zero uncertainty. The Hermitian quantum operator associated with

the number of photons in the field is given by the product of the creation and annihilation

operators,

N̂ = â†â, (2.35)

and is simultaneously diagonalized by the number states, N̂ |n〉 = n|n〉. Other states of the

electromagnetic field mode can be expressed using the number states as a basis,

|ψ〉 =
∞∑

n=0

cn|n〉. (2.36)

This thesis is concerned with distinguishing between optical coherent states |α〉, which

are eigenstates of the field annihilation operator

â|α〉 = α|α〉 (2.37)
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2.2. APPLICATION TO OPTICAL COHERENT STATES

A coherent state describes an optical field produced by an ideal laser, where the eigenvalue

α is the complex-valued amplitude of the plane wave generated by the laser. A coherent

state |α〉 is represented in the infinite-dimensional Fock space by [18]

|α〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n〉. (2.38)

Since the optical coherent states are not eigenstates of the number operator N̂ = â†â, there

is quantum uncertainty in the number of photons in the field. If one were to measure the

number operator of an optical field in the coherent state |α〉, the different number outcomes

would be obtained according to a Poisson distribution. Fig. 2.1 shows such a distribution

for a coherent state of amplide |α| = 1. Notice that although the mean photon number |α|2

is 1, the outcome of the number operator measurement is highly likely to be 0. A coherent

state fitting a Poisson distribution,

P(n) = 〈α|â†â|α〉 (2.39)

=
|α|2n

n!
e−|α|

2

, (2.40)

has a mean and variance of |α|2. That is to say, |α|2 is the mean number of photons that

would be detected for a laser field described by the coherent state |α〉, meaning that the

laser power measured in a time-interval τ is related to the coherent state amplitude by

P =
~ω|α|2

τ
. (2.41)
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α = 1

Figure 2.1: Poissonian photon counting statistics for a single mode optical field in a coherent
state with amplitude α = 1, corresponding to an average of one photon in the laser field.
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2.3. BINARY COHERENT STATE DISCRIMINATION

2.2.1 Optical Displacements

It turns out that coherent states can easily be described as the vacuum state, |0〉, shifted by

a displacement operator. In quantum optics, the displacement operator is defined as [18]

D[β] = eβâ†−β∗â, (2.42)

where â† and â are the raising and lowering operators, respectively. D[β] is a unitary opera-

tion and has the effect of transforming the annihilation operator by a scalar, represented in

the Scrhödinger picture by

D[β]†âD[β] = βâ. (2.43)

It follows that the displacement operator transforms coherent states by shifting their ampli-

tude [18]:

D[β]|α〉 = |α+ β〉. (2.44)

The physical process that best displays the effect of such an operation is interfering two

coherent states, |α〉 and |β〉, at a beam splitter. This provides a way to shift the amplitude

and phase of a coherent state.

2.3 Binary Coherent State Discrimination

The number operators |n〉 are orthogonal, 〈n|m〉 = δnm, but coherent states are not. Thus,

if the two candidate states in our alphabet are coherent states, then we cannot perfectly

decide which state was handed to us; the quantum limit of error derived above is the best we

can achieve. So, we are given one of two possible coherent states, |α1〉 and |α2〉, and asked

to identify the secret state.

Thus, our alphabet can be displaced to the equivalent problem of distinguishing between

|0〉 and |α〉, where

|0〉 = D[−α1]|α1〉 and |α〉 = D[−α1]|α2〉 = |α2 − α1〉. (2.45)

It is somewhat ridiculous to put it this way, but our “binary optical coherent state discrim-

ination” problem is reducible to asking the question: Hey, is the light on or off?
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2.3. BINARY COHERENT STATE DISCRIMINATION

2.3.1 The Shotnoise Error Probability

Let’s look at this from an experimental point of view. What can we physically do to this

unknown state to learn more about its identity? Our arsenal of laboratory measurement

techniques basically amounts to two things: quadrature detection and photon counting.

Quadrature detection is the name given to a variety of interferometric measurements that

generally focus on determining the phase of a coherent state through the “quadrature op-

erator” Ŷ = i(â − â†)/2 [18]. Photon counting implements a measurement of the number

operator N̂ = â†â to determine the number of photons in a laser field.

If we are merely trying to identify whether we have the vacuum state or the coherent

state, photon counting seems like most viable experimental technique. It is easily employed

and we can adopt a simple hypothesis testing procedure: if we receive a photon click, we say

the state is |α〉; if we do not, we say the state is |0〉. What is the probability that we are

wrong if we proceed in this fashion? Referring to Eq. (2.5), the probability of error is given

by

PE = P(0|α)pα +P(α|0)p0. (2.46)

Presumably, pα and p0 can be any value such that pα +p0 = 1, but we are only concerned

with the case of equal probability, pα = p0 = 1
2
. Looking at the conditional probabilities

above, we can use our testing policy to make some evaluations. The second term indicates

the error that would occur if we mistakenly identify the vacuum state as |α〉. But, assuming

our photon counter is perfect, the vacuum would produce zero clicks and we would never

misidentify it. We can now apply the Born rule and calculate the probability of error involved

in photon counting:

PE =
1

2
P(0|α) + 0 (2.47)

=
1

2
|〈0|α〉|2 (2.48)

=
1

2
e−

|α|2
2 e−

|α|2
2 (2.49)

=
1

2
e−|α|

2

. (2.50)

This probability of error, called shotnoise, arises as a result of the fact that |α〉 is a super-

position of all number states in Fock space. Thus, it is possible for our counter to see no
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Figure 2.2: Comparison of the quantum limit and shotnoise error probabilities for discrim-
inating between two optical coherent states, |0〉 and |α〉 as a function of the mean photon
number |α|2.

clicks, even when light is present, and we can mistake our coherent state for the vacuum.

Clearly, this error is larger for smaller photon numbers, |α|2, which agrees with our intuition

provided by Poisson statistics. If the photon number is large, there is small probability that

the outcome will be zero clicks.

2.3.2 The Quantum Limit

Shotnoise is sometimes incorrectly referred to as a quantum limit [1, 8]. Let’s look at the

expression for the Helstrom bound in this case and see that it is smaller than the shotnoise.

From Eq. (2.31),

pH =
1

2

(
1−

√
1− 4

1

2

1

2
|〈0|α〉|2

)
(2.51)

=
1

2

(
1−

√
1− e−|α|2

)
. (2.52)

Plotted in Fig. 2.2, the two curves are obviously different—for instance, at a mean photon

number of one, the true quantum limit is nearly twice as small as the value of the shotnoise.

Remember, however, that this true quantum limit was determined by minimizing over all

allowable POVMs. This means that the basis in which we need to make the measurement
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2.3. BINARY COHERENT STATE DISCRIMINATION

is not necessarily convenient. According to what was found earlier, Eq. (2.32), we need to

construct a basis for measurement that lies along

|−〉 =

(
2〈0|α〉 − 〈0|α〉√

1− |〈0|α〉|2

)
|0〉+

(
1−

√
1− |〈0|α〉|2√

1− |〈0|α〉|2

)
|α〉. (2.53)

This Schrödinger cat-state basis for measurement involves a superposition of coherent states ;

the experimental viability of realizing such a measurement borders on the impossible, much

less impractical. This is actually why shotnoise receives the quantum limit misnomer—it is

largely accepted to be the feasible experimental limit.

Since the true quantum limit seems unreachable by a direct measurement, we need to

employ more clever techniques if we hope to achieve it. This is where the theories of quantum

feedback and control come into play.
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Chapter 3

Closed-Loop Quantum State
Discrimination

We want to minimize our probability of error and experimentally realize the true quantum

limit; however, doing this through a direct cat-state measurement is ridiculously difficult.

It has been forty years since Helstrom first performed the derivation of the true quantum

limit discussed in the previous chapter, but no one has been able to physically construct an

optimal basis in which to measure coherent states! Although it appears that constructing

|−〉 = c1(α)|0〉+ c2(α)|α〉 (3.1)

will not be possible, the end goal of achieving the quantum limit of error is not necessarily

limited by this fact. In place of the cat-state, we use real-time quantum feedback [10, 11, 13]

to make a closed-loop measurement that gives us the best possible chance of guessing the

correct identity of an unknown coherent state.

3.1 Closed-Loop Measurements

How is a closed-loop measurement different than standard POVMs? The answer is not very

subtle, and it provides some insight as to why feedback may be highly useful in making a

quantum measurement. Traditionally, a measurement in quantum mechanics is considered

instantaneous—a quantum state is instantly transformed into its post-measurement state.

The idea of using feedback admits that the measurement has a finite duration. During this
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3.1. CLOSED-LOOP MEASUREMENTS

measurement, a quantum state can both evolve smoothly and change stochastically. In fact,

any real measurement stipulates that this is case; an instantaneous measurement requires

an infinite amount of energy and is therefore physically unrealistic.

In our specific case, the coherent states |0〉 and |α〉 are optical pulses with a specified

temporal extent τ and an average photon number. A measurement of such a pulse is made

over time τ using a photon counter. From an instantaneous point of view, the result of

the measurement is simply the number of clicks the counter produces over the time interval

[0, τ ], a measurement of the number operator. Clearly, however, these clicks occur at distinct

moments in time. Something is lost if the measurement does not have a temporal duration.

We, therefore, have a measurement record, Ξ[0,τ ], that tells us not only how many photons

were counted, but when:

Ξ[0,τ ] = (t1, t2, . . . , tn). (3.2)

The idea of knowing when the clicks occurred shows that some extra information is hidden

within an instantaneous description of photon counting: a temporal history. From an infor-

mation perspective, feedback already appears to be on the right track to making a better

measurement.

It also turns out that feedback is less demanding about the physical resources needed

to implement it. This can be observed in a simple analogy from classical control theory.

Consider an owner of a store who is only allowed to sell 10 units of a particular item in

a day. If he has to prepare for an entire week in advance, he is forced by the worst-case

scenario to order 70 units, and this does not guarantee that they will all be purchased. On

the other hand, if he is allowed to examine his remaining stock and place an overnight order

at the end of every day, he only has to order 10− n units, where n is the number remaining

at the end of the day. At the end of the week, the amount of excess resource provided by

the store owner can vary drastically between the two cases—if no purchases are made, the

owner either has 70 excess units on hand or 10. Thus, the simple act of him being able to

examine his inventory during the week allows him to limit the expense on resources.

Similar to the analogy, open-loop POVMs are required to account for all possible out-

comes of a measurement, making them physically demanding. A closed-loop feedback ap-

proach, meanwhile, can drive a quantum system during the measurement process to some-
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Figure 3.1: Schematic of a closed-loop measurement that combines photon counting with
feedback-mediated optical displacements to best determine the identity of an optical state.

thing that is more readily feasible in the lab [13].

As admitted earlier, the toolbox of a quantum mechanic operating in the optical regime

is quite limited: the most easily implemented laboratory operations are photon counting

and displacements of coherent states. Fig. 3.1 shows a schematic that employs these two

processes to make a closed-loop measurement for an optical state discrimination problem.

The basic idea is to create smooth, unitary transformations of the quantum system while

making a measurement. Optical displacements, which are unitary, are not only implemented

simultaneously with photon counting, but are also dependent, through a feedback process,

on the results of this measurement. Much like the store owner, we frequently examine our

inventory by photon counting and decide what course of action through displacement should

be taken. This idea is based on an approach suggested by Dolinar in 1973 [19] and has been

refined and developed in light of quantum measurement theory in recent years [8].

But what determines our policy for implementing displacements? Well, it depends not

only on current observations of the photon counting measurement, but also on the overall

measurement history.

3.2 Determining an Optimal Policy

3.2.1 Feedback Hypothesis Testing Procedure

Since we are employing a feedback measurement with a time duration, we can introduce

the concept of a probability that is constantly updating throughout the measurement. This
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3.2. DETERMINING AN OPTIMAL POLICY

evolving probability is contingent upon the measurement history Ξ[0,t] as well as a history

of the displacements performed on the system, ut. This probability is updated according to

Bayes’ Rule,

P
(
ψ|Ξ[0,τ ], u[0,τ ]

)
=
P
(
Ξ[0,τ ]|ψ, u[0,τ ]

)
P0(ψ)

P(u[0,τ ])
, (3.3)

and describes the probability that |ψ〉 ∈ {|0〉, |α〉} is the identity of the state, given both

the displacement and measurement histories. If we want to maximize this, and thus increase

our chance of being right, we need to maximize the conditional probability P(Ξ[0,τ ]|ψ, u[0,τ ]).

Since both the applied displacements and the measurement record are presumably known,

selecting the state that maximizes the conditional probability is how state discrimination is

performed. That is, if P(Ξ[0,τ ]|α, u[0,τ ]) > P(Ξ[0,τ ]|0, u[0,τ ]), the identity of |ψ〉 is determined

to be |α〉, and vice versa. This process is often called a maximum likelihood method.

This is a straightforward way to discriminate between two states, but how are we supposed

to evaluate these conditional probabilities? In order to do this easily, we need to exploit the

fact that we are dealing with coherent states. The statistics of a coherent state ensure that it

is a Poisson process; it follows that photon detection events are completely independent from

one another. If we receive a click at time t, we are not any more or less likely to observe one

at time t+ δt. Thus the probability to see a click is constant over time; it can be calculated

by considering the probability of detecting one photon during a δt� 1 time step. From the

Poisson distribution fit by a coherent state |α〉 over this time, the probability is found to be

P(1[0,δt]) =
(|α|2δt)1

1!
e−|α|

2δt (3.4)

= |α|2δt
(

1− |α|2δt+
(|α|2δt)2

2!
+ . . .

)
(3.5)

≈ |α|2δt. (3.6)

Now, the entire measurement duration can be broken up into N bins of time δt. Our

measurement record Ξ[0,τ ] is composed of N independent events that each follow the proba-

bility given in Eq. (3.6). The conditional probability therefore simplifies to a product of the

independent events:

P(Ξ[0,τ ]|ψ, u[0,τ ]) =
N∏

i=1

|ψ + uti|2δt. (3.7)
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The calculation required to determine |ψ〉’s identity is now easily implemented. However,

this only properly describes our hypothesis testing procedure for a closed-loop measurement

if we know what ut is!

3.2.2 Optimal Displacement

An optimum displacement policy, u?
t is determined using a technique from control theory

[20]. At every point in time, t = [0, τ ], of the measurement, the amplitude of displacement

is chosen so that the probability of error is minimized over the remaining measurement time

(t, τ ]. When these are all combined, the time-additive analog of the traditional probability

of error, Eq. (2.46), is created [8]. This is what needs to be minimized:

PE[ut] =
1

2

∫ τ

0

dt
[
P(α|0, u[0,t]) +P(0|α, u[0,t])

]
. (3.8)

The conditional probabilities describe choosing the wrong state given the displacement his-

tory u[0,t]. Minimizing this error is very different from what was previously done because

this demands that the error is minimized at all times during the closed-loop measurement,

not just at the end of an “instantaneous” measurement.

The expression is complicated, but it looks very similar to the action functional encoun-

tered in Lagrangian mechanics. In fact, the analogy works quite well because we are invoking

the calculus of variations. Instead of finding the path of least action, as is done in Lagrangian

mechanics, we are minimizing the probability of error. Minimization is solved by means of a

partial differential equation called the Hamilton-Jacobi-Bellman equation; this recently was

accomplished using modern optimal control theory [8], and the solution is

u?
t (n[0,t)) =

α

2

(
eiπ(n[0,t)+1)

√
1− e−n̄αt/τ

− 1

)
. (3.9)

Applying this displacement amplitude analytically achieves the quantum limit of error for

optical state discrimination, Eq. (2.31).

3.3 Interpreting the Optimal Solution

Eq. (3.9) is a displacement that alternates in time between two curves based on received

photon counts n[0,t). One curve represents an odd number of registered clicks while the other
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3.3. INTERPRETING THE OPTIMAL SOLUTION

Figure 3.2: The optimal displacement, u?
t , for a simulated trajectory alternates, with every

detection of a photon, between two waveforms.

an even number such that

u?
t (odd) =

α

2

(
1√

1− e−n̄αt/τ
− 1

)
, u?

t (even) =
α

2

(
−1√

1− e−n̄αt/τ
− 1

)
. (3.10)

Clearly, the odd case is strictly positive and the even strictly negative, while the difference

between their magnitudes is |u?
t (even)| − |u?

t (odd)| = α. Notable features of these curves are

that they both start out at t = 0 with infinite magnitudes, and as t→∞, u?
t (odd) converges

to 0 and u?
t (even) converges to −α.

A very convenient consequence of these optimal displacements is an easy process of state

discrimination. The conditional probability P(Ξ[0,τ ]|ψ, u?
[0,τ ]) is maximized when we make

the following association: if we are currently applying the even displacement, our hypothesis

is that the coherent state is |α〉, and viceversa for the odd displacement and |0〉. Thus,

when we apply the displacements of Eq. (3.9), we simply have to count the number of clicks

produced by our photon counter to best determine the identity of |ψ〉. Since u?
t stipulates

that we start out with the belief that the state is |α〉, our final decision is as follows: an odd

number of clicks implies |ψ〉 = |0〉; an even number of clicks implies |ψ〉 = |α〉.

A simulation created in Matlab demonstrates the process of switching between curves,

and thereby hypotheses, each time a photon click is received. Plotted in Fig. 3.2 is the

simulation for a single measurement trajectory which alternates between curves and ends

up with the conclusion that the provided state was |α〉. With this trajectory in mind, it
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3.3. INTERPRETING THE OPTIMAL SOLUTION

is appropriate to discuss some intuition about why this optimal solution works. We have

implemented a displacement to push the quantum state to being more measurable by a

photon counter, implying that we have displaced it to vacuum. Every time we observe a

photon, we decide that we are doing a bad job of this negation. After all, that is what a

photon counter measures efficiently—the difference between vacuum and not vacuum. This

is precisely why the curve with value near −|α| at the end of the measurement is associated

with the |α〉 hypothesis: If we are right, then the photon counter will be very unlikely to

produce a click. The same holds true for the opposite case as well.

The simulation that is used to create the trajectory plot is also applied to a statistical

ensemble of trajectories, determining the correctness of guesses made using closed-loop feed-

back. A comparison is made between the simulated data and the quantum probability of

error in Fig. 3.3, indicating that this feedback process does indeed mimic the statistics of

the optimal cat-state measurement. Now, we just need to realize this experimentally.
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Figure 3.3: Simulated data for the probability of error resulting from a closed-loop discrim-
ination between two quantum states |α〉 and |0〉 as a function of the mean photon number,
|α|2
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Chapter 4

The Experiment

We now have an optimal solution given the advantage of a closed-loop adaptive measurement.

Although the theory behind its derivation is complicated, laboratory implementation of the

solution involves only displacement of the quantum state, photon counting, and manipulation

of displacement amplitudes. These are all relatively easy to do; the following pages discuss

the physical realization of a closed-loop quantum coherent state discrimination.

4.1 Apparatus

4.1.1 Enabling Displacements

Fig. 4.1 shows a schematic of the laboratory setup. Infrared light from an 852 nm diode

laser is incident on a Mach-Zender interferometer that terminates at a silicon avalanche pho-

todiode (APD). The source laser is split at the initial fiber beamsplitter (FBS1) to produce

two separate optical fields. The upper arm of the interferometer provides the quantum state

that we are investigating, while the lower arm acts as a local oscillator that displaces the

quantum state as they couple into the interferometer’s terminating beamsplitter (FBS2). It

is worth noting that all elements in the interferometer use polarization-maintaining fiberop-

tics, ensuring that excellent mode-matching and good phase stability between the arms are

achieved. This makes optical implementation of displacements on our quantum state much

easier.

Each arm of the interferometer features a fiber-coupled intensity modulator (FIM). This
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Figure 4.1: Schematic of laboratory implementation of the closed-loop measurement—the
quantum state is prepared at FIM1, while the contents of the dotted region compose the
feedback controller.

device can alter the amplitude of an incoming field through the use of an electro-optical crys-

tal and an interferometer of its own. Placed in one of the arms of the internal interferometer,

the crystal’s index of refraction changes with an applied electric field. Since the crystal lies

between two capacitor plates, applying a field across the crystal is equivalent to applying a

voltage. Thus, through a voltage, a phase difference is created and a change in amplitude is

induced. The fiber-coupled phase modulator (FPM) in the upper arm of Fig. 4.1 operates

similarly, except it is not equipped with its own interferometer. It merely alters the path

length for the field in that arm.

FIM1, in the upper arm, is where the to-be-discriminated quantum state is prepared; we

can control the amplitude via an input voltage. The rest of the setup, however, is devoted to

the closed-loop measurement, as indicated by the dotted region in the figure: FIM2 is used

to control the amplitude of the local oscillator while the FPM regulates the phase difference

between the local oscillator and the quantum state. It is through these two modulators that

we will be able to produce the prescribed local oscillator curves given by Eq. (3.9).

Coherent states in this experiment are constructed as square optical pulses that have a

duration of τ = 20 µs and amplitude |α|. The feedback enabled measurement occurs over

this 20 µs time frame. This allows us to run many trajectories and obtain decent statistics.
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4.1.2 Control Electronics

All voltages applied to the modulators are governed by a computer equipped with high-speed

digital signal processing electronics. The computer can produce feedback at a bandwidth

of about 30 MHz and actually controls all elements of our apparatus: it provides a voltage

that stipulates the selection of our quantum state, creates waveforms to be transmitted to

the modulators during the feedback process, triggers the photodiode, and records photon

counter clicks during the measurement window. The computer’s electronics do not have

the capability to drive large voltages, but this is not a requirement of our setup. Since the

electro-optic modulators used in our experiment are fiber coupled, they can utilize a smaller

crystal whose index of refraction is to be altered. In this case, an equivalent electric field,

and thereby change in path length, is achieved with a smaller voltage, on the order of 100

mV. This means that our control of amplitudes and phases via the modulators can be very

precise—yet another strength to using an all-fiber setup.

The business of switching waveforms and phases, which is required by the optimal solution

ut, is controlled outside the computer. Four voltage channels are sent from the computer into

two separate switches: The first switch takes two channels that act as changing amplitude

waveforms to be sent to FIM2; the second takes two channels that determine the appropriate

phase displacement at the FPM. The appropriate amplitude and phase, associated with the

|α〉- and |0〉-case policies, are implemented simultaneously. Every click that is received by

the photon counter is then propagated electronically to the digital switches, and the current

policy is updated to become the alternative. This happens exactly as simulated in Fig. 3.2.

All the components of our prescribed, real-time quantum feedback are in place; however,

some classical feedback electronics are also necessary. The fiberoptic construction of our

apparatus has some noise effects—the fiber is quite sensitive to vibrational and thermal

noise. Because of this, our interferometer has noise-induced path length variations that

we need to eliminate. We use standard classical control theory to create an error signal

and lock the path length of our interferometer [21]. In addition, the modulators lose their

calibrations, described below, due to their sensitivity to fluctuations in temperature. They

have been thermally stabilized in a similar classical control approach.
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4.2. CALIBRATIONS

Figure 4.2: Photographs of laboratory setup. The overall apparatus is pictured on the left,
and the temperature-stabilized, fiber-coupled modulators on the right.

This is the entirety of the physical apparatus: the overall Mach-Zender structure, the

amplitude and phase modulators, the feedback control provided by the computer, and the

control electronics. Fig. 4.2 shows two pictures of our actual apparatus with the control

electronics in place. The APD is inside the black box of the left-hand picture and the blue

objects are coils of fiberoptical cable. The picture on the right, meanwhile, features the

temperature-controlled housing of the electro-optical modulators; the small circuit is the

control servo and the three narrow gold structures at the base are the modulators.

4.2 Calibrations

In order to utilize the modulators, we need to be certain that input voltages yield the desired

effects. The calibration procedure for the intensity modulators is simple: After isolating the

modulator by disabling the interferometer, we input a range of voltages, count the number

of clicks that our photon counter registers over the 20 µs pulse, and average over 100,000

trajectories. The resulting plot of data is not included, but looks much like Fig. 4.4. Since

the voltage relates linearly to the phase delay produced by the crystal, it makes sense that

mean photon number plotted against the applied voltage will be sinusoidal. We are able

to fit these data and invert the relationship. As a final step, we attempt to produce a

mean photon number |α|2 by applying the calibrated voltage. Fig. 4.3 shows a parity plot,

which demonstrates our success at preparing desired amplitudes, for each of our intensity
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Figure 4.3: These parity plots demonstrate our ability to accurately produce amplitudes using
the intensity modulators. The top curve is FIM1 and the bottom is FIM2. The inset plot,
meanwhile, demonstrates the Poisson statistics of a coherent state.

modulators.

Also worth noting in Fig. 4.3 is the inset plot. This features the counting statistics of

a prepared state, where |α|2 is app 1. We expect the statistics of a coherent state to be

Poissonian; it is reassuring that for a Poisson fit of the data we find χ2 − 1 < 10−6. This

means that our produced quantum coherent states are indeed limited by quantum mechanics.

After setting both of the intensity modulators to the same amplitude and reconnecting

the interferometer, we now can calibrate the FPM. A plot of relative interferometer phase

difference is generated by applying a range of voltages to the phase modulator. Fig. 4.4

shows that we achieve a full range of phase differences. Initially a plot of mean photon

number versus modulator voltage, this curve has a maximum when the two arms of the

interferometer are in phase. We thus define this maximum point as having zero relative

phase; the minimum point, on the other hand, occurs when the two arms are completely

out of phase. Vπ is defined to be the voltage between the in- phase and out-of-phase cases.

Thus, we know exactly the change in voltage needed to switch the phase as stipulated by
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our optimal solution.

With calibrations complete, we are ready to implement the optimal solution u?
t ; however,

there are some experimental issues that we need to consider.

4.2.1 Limitations and Imperfections

Since this is an actual physical implementation, certain aspects of our apparatus are not

ideal. First of all, our photon counter is not perfect. Even in complete isolation from any

source of light it will randomly detect something and produce a click. This rate, for the time

frame in which we are interested, is n̄0 = 0.0078 (which translates to about 40 counts per

second) and is referred to as a dark count rate. Thus, there is always a small probability

that our photon counter will produce a click.

Another cause for concern is the limited amplitude range provided by our modulators,

specifically in FIM1. A feature of these modulators in real life is that they cannot achieve

perfect destructive interference. A measurable quality called the extinction ratio can qualify

how effective a particular modulator is at making an optical state vanish. For our purposes,

the extinction ratio, re, is given in decibels by

re = 10 log10

(
nmax

nmin

)
, (4.1)
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4.2. CALIBRATIONS

where nmax is the largest number of photon counts in a certain time window and nmin is the

smallest. These correspond to no destructive interference and fully destructive interference,

respectively.

In our apparatus, FIM1 is of particular concern because it acts as the amplitude modu-

lator for the local oscillator. This means that it needs to be able to produce small photon

numbers, at or near the darkcount rate. On the other hand, the optimal solution calls for the

waveform to begin with a very large amplitude. Since we are more concerned with having

the ability to achieve the vacuum, the maximum amplitude of our light is limited such that

it is no longer optimal. We use our modulator with the highest extinction ratio as FIM1. For

this modulator, re is around 33, but what matters more is that we are limited to producing

mean photon numbers between nmin ∼ 0.008 and nmax ∼ 15.8.

The simulations discussed in Chapter 3 are designed to incorporate the limitations of

the modulators and APD. When the appropriate values are included, results show that

their effects are limited. We should still be able to approach the quantum limit given the

limitations of our apparatus.

A final detail that should be discussed is that of efficiency. Since we displace the quantum

state in question by means of a beamsplitter, we introduce some loss in the efficiency of

our apparatus. The coupling beamsplitter that is used in our apparatus is fifty percent

transmissive and fifty percent reflective. Because of this, half of the quantum state that has

come our way is lost—reflected into nothingness. The efficiency η automatically drops to

0.5 because of this and is subject to other optical losses as well. However, since we conduct

our experimental feedback and calibrations based on photons received at the counter, this

inefficiency does not affect us. It factors out entirely; the shotnoise limit, quantum limit,

and our error calculations all possess the same efficiency. We can still expect our closed-loop

calculation of the probability of error to approach the limit that quantum mechanics imposes

on our apparatus.
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4.3. RESULTS

4.3 Results

Before attempting to produce a closed-loop result, we should verify that our apparatus

is capable of producing results in agreement with the shotnoise probability of error. This

involves just photon counting of the prepared coherent state. Sampling with equal probability

from |0〉 and |α〉, our goal is to identify which state was provided. We adopt the hypothesis

testing procedure outlined in Chapter 2: if the photon counter produces a click, we say the

unknown state is |α〉; if not, it’s |0〉. We then can compare our decision with the state that

was actually prepared to determine if an error occurred. The red squares in Fig. 4.6 are data

points of 100,000 trajectories with 0 ≤ |α|2 ≤ 1. Our data agree very well with the shotnoise

limit of error; we have a discrepancy of χ2 − 1 = 1.13 × 10−5. This demonstrates that the

dark count rate of the APD does not inhibit our ability to count photons effectively.

Fig. 4.5 shows a single trajectory of a closed-loop measurement when the coherent state

is |α〉 = |0.02〉. The square root of the mean photon number taken over many trajectories is

displayed in (a) as |α|. The displacement u?
t , provided by the local oscillator, is also shown,
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Figure 4.5: An oscilloscope trace of the output of FIM2 demonstrates the laboratory appara-
tus’ ability to alternate between waveforms with each photon detection.
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with (b) showing its magnitude and (c) its phase. The final panel, (d), is the output of our

photon counter. With each received count, our hypothesis about the identity of the state

changes. At the end of this particular trajectory, we predict the unknown state to be |α〉

and are correct in that prediction.

For the most part, Fig. 4.5 looks like our optimal solution says it should, but a few details

should be discussed. As mentioned before, we are limited to a finite amplitude at (i) when

the theorized u?
t , from Eq. (3.9), clearly calls for a much larger amplitude. Notice that the

magnitude at this point is the maximum allowed by re, just short of |4|, which would yield

a mean photon number of 16. At the point labeled (ii), the computer gates on the APD

as well as the voltage output to the modulators. This spike at t = 0 is not a real detection

event—it is simply a timing signal that declares the photon counter is on. Finally, as (iii)

indicates, there appears to be a rise-time in the changing displacement magnitude. This

is only an effect of the photodiode that is monitoring this amplitude; it is not an actual

physical feedback process.

After running 100,000 trajectories like this one for several coherent state magnitudes, we

are ready to look at some data. The process for making our guess remains the same as that

outlined in section 3.3: since we start with the belief that the unknown quantum state is

|α〉, an odd number of clicks corresponds to thinking we were given |0〉 and an even number

of clicks to |α〉. For each trajectory, we compare our guess with the state that was actually

prepared; the probability of error is simply the number of times we were wrong divided by

the total number of trials. The blue circles in Fig. 4.6 are the results of a particular set of

data analyzed in this manner. All data points for |α|2 ≤ 1 fall below the shotnoise limit of

error; however, for mean photon numbers larger than a half, our data pulls away significantly

from the true quantum limit.

It appears that not being able to perfectly mimic the curves of u?
t greatly affects our

ability to reach the quantum limit. But, there is a problem! Since we were not able to mimic

the displacements required by the optimal solution, we should not be restricted to making our

decision based only on the number of photon counts—equivalent to basing our decision on the

theoretical displacement history. With thanks to a suggestion from H.M. Wiseman, we re-

evaluate our data, this time using the actual displacement history. This history corresponds
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to trajectories like the plot of Fig. 4.5 and not u?
t , the optimal version. We, therefore, return

to determining which quantum state maximizes the conditional probability P(Ξ[0,τ ]|ψ, u[0,τ ]),

only using the appropriate u[0,τ ]. We do not end up with the convenient counting policy

as outlined in section 3.3, but can determine the most likely candidate state nonetheless.

Analyzed in this manner, the exact same data from above becomes the green triangles in

Fig. 4.6. Our procedure nearly achieves the quantum limit over all photon numbers tested.

40



Chapter 5

Conclusions

The data in Fig. 4.6 demonstrates a quantum state discrimination measurement that success-

fully outperforms the shotnoise probability of error and approaches the true limit imposed

by quantum mechanics.

This was done not through constructing an optimal cat-state measurement basis, but

rather by utilizing a real-time, closed-loop quantum feedback measurement. During a count-

ing measurement, displacements of a coherent state are performed to optimize the chance of

correctly identifying it. By performing quantum feedback, no longer do all possible statistical

outcomes need to be considered to make an optimal quantum measurement. A closed-loop

measurement is thus less costly to implement in the laboratory, without losing any theoretical

optimality.

This experiment demonstrates the first sub-shotnoise measurement of probability of error

and serves as a proof-of-principle that quantum feedback is a viable means to emulating

optimal quantum measurements in real life.

My personal effort on this project includes mostly experimental aspects, since the theory

discussed in the first three chapters was already in place. I wrote and ran a simulation code,

included as an appendix, to help aid in designing the experimental apparatus; I performed

the optical procedures involved in creating and manipulating the coherent states; and I

designed and built some of the required control electronics. Additionally, I assisted Rob

Cook in writing the Matlab code that interfaced with the experiment by managing counting

and displacement processes, calibrating the electro-optic modulators, and collecting and
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graphically interpreting data.

I would like to thank JM Geremia and Rob Cook for inviting me to be a part of this

project. They allowed me to take part in every portion of the experiment and ensured that

I was an equal owner of the project and any decisions that were made. They were equally

invaluable in helping me understand any physics involved, and I hope that the resulting

clarity with which I view this project has been passed along accordingly by this thesis.
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Appendix A

Matlab Simulation Code

This Appendix contains some example code, which was written to simulate the closed-loop

state discriminating quantum measurement. The simulations include experimental imperfec-

tions like the optical modulator extinction ratio and the quantum efficiency and dark count

rate of the photon counter. This code was used to help design the experimental apparatus

and to aid in interpreting the resulting data.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% simulateStatisticsMeasurement.m
% Simulate a measurement of the quantum error probability by
% performing Monte Carlo simulation of the quantum measurement

clear all;

SignalProbability = 0.5;
TrajectoryCount = 100000;
PhotonNumberList = [ .1 : .2 : 1 ];

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Loop over signal coherent states (with different photon number)

ErrorProbability = zeros( length( PhotonNumberList ), 1 );

fprintf(’Running Closed-Loop Measurement Simulation\n’);
for Index = 1 : length( PhotonNumberList )

fprintf(’ Photon number %1.1f (%4d of %02d)\t PError = ’, ...
PhotonNumberList(Index), Index,length(PhotonNumberList) );
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VerdictList = zeros( TrajectoryCount, 1 );

StateList = random( ’Uniform’, 0, 1, TrajectoryCount, 1 ) ...
> 0.75*SignalProbability;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Loop over state discrimination measurement trajectories

for TrajectoryIndex = 1 : TrajectoryCount

[VerdictList(TrajectoryIndex) ] = ...
closedLoopStateDiscrimination( ...
StateList(TrajectoryIndex), ...

PhotonNumberList(Index), SignalProbability );
end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the number of state discrimnation errors
ErrorProbability(Index) = sum( VerdictList ~= StateList ) ...
/ TrajectoryCount;

fprintf(’%f\n’,ErrorProbability(Index));

end

NumberList = [ 0: 0.01 : max( PhotonNumberList ) ];
HelstromLimit = ( 1 - sqrt( 1 - ...

4*SignalProbability*( 1-SignalProbability ) * ...
exp( -NumberList ) ) ) / 2;

ShotnoiseLimit = min( [SignalProbability 1-SignalProbability] ) ...
* exp(- NumberList );

figure( 1 );
semilogy( PhotonNumberList, ErrorProbability, ’b*’, ...

NumberList, HelstromLimit, ’b’, ...
NumberList, ShotnoiseLimit, ’k’);

grid;
set( gca, ’Ylim’, [8E-2 0.5] );

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% END

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% closedLoopStateDiscrimination.m
%
% This function simulates the closed-loop quantum measurement
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function [ Verdict ] = closedLoopStateDiscrimination( ...
SignalState, PhotonNumber, SignalProbability )

p1 = SignalProbability + 0.01;
p0 = 1 - p1;

TimeList = linspace(0, 1, 200);

SignalIntensity = SignalState * PhotonNumber;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the Local Oscillator Amplitude Gain Profile

NumberData = TimeList * PhotonNumber;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the two Local Oscillator Intensity Waveforms

LOGainData = ( 1 ./ sqrt( 1 - 4*p0*p1*exp( -NumberData ) ) - 1 ) / 2;
LOIntensity(:,1) = (LOGainData+1).^2 * PhotonNumber;
LOIntensity(:,2) = (LOGainData).^2 * PhotonNumber;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Perform the Measurement

[ClickData, LOAmplitude] = ...
simulateMeasurement( SignalIntensity, LOIntensity );

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine the State Discrimination Outcome

Verdict = not( mod( sum( ClickData ), 2 ) )’;

return

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% simulateMeasurement.m
%
% This measurement simulates a displaced photon counting detector

function [ClickData, LOAmplitude] =
simulateMeasurement( SignalIntensity, LOIntensity )

MaxSignalIntensity = 2.0;
MaxLOIntensity = 11;

MinSignalIntensity = 0.005;
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MinLOIntensity = 0.02;

DarkCountRate = 0.0075; % Detector Dark Count Rate
PhaseNoise = 100; % Phase Noise in mRad

SignalIntensity = min( SignalIntensity, MaxSignalIntensity );
SignalIntensity = max( SignalIntensity, MinSignalIntensity );
LOIntensity = min( LOIntensity, MaxLOIntensity );
LOIntensity = max( LOIntensity, MinLOIntensity );

SignalIntensity = SignalIntensity* (1+random(’Normal’,0,.1));
LOIntensity = LOIntensity*(1+random(’Normal’, 0, 0.1 ) );

StateAmplitude = sqrt( SignalIntensity );

TimeData = linspace( 0, 1, length( LOIntensity ) );
dt = TimeData(2) - TimeData(1);

RData = random( ’Uniform’, 0, 1, length( TimeData ), 1 );
ClickData = zeros( length( TimeData ), 1 );
LOAmplitude = zeros( length(TimeData), 1 );

Count = 0;

TotalIntensity = zeros( size(TimeData) );

for TimeIndex = 1 : length( TimeData )

p = mod( Count, 2 );
LOAmplitude(TimeIndex) = ...
exp( i*pi*(p+1)) * sqrt( LOIntensity(TimeIndex,p+1) );

TotalAmplitude = ( StateAmplitude + LOAmplitude(TimeIndex) );
TotalIntensity(TimeIndex) = TotalAmplitude’ * TotalAmplitude;

if ( (TotalIntensity(TimeIndex)+DarkCountRate)*dt > ...
RData(TimeIndex) )

Count = Count + 1;
ClickData( TimeIndex ) = 1;

end

end

return
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