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1 Abstract

We† report a new experimental method for determining the velocity of the temperature-

entropy wave that propagates through 4He on its self-organized state. Over 50 datasets were

examined in order to locate two that provide information on the velocity of this recently

discovered mode. This velocity is expected to increase as Q3, where Q is the heat flux that

creates the self-organized critical state. We developed three different coding algorithms for

data analysis and our results agree with earlier data that were obtained using a time-of-flight

pulsed technique. From the information that we gathered by looking at the data, new data

will be collected that specifically isolates the information we are looking for.

†Work done in collaboration with D. Sergatskov, S.T.P. Boyd, Q. Li, and R.V. Duncan at The University
of New Mexico.
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2 Introduction and Theory

2.1 Helium at Low Temperatures

Helium was first observed in 1868 by an astronomer looking at the elements in the sun,

by finding absorption lines that did not match any known element. This element was given

the name helium, after the word Helios, the sun. It was later discovered on Earth in 1895.

Since then people have experimented on helium to test fundamental theories in physics,

because complexity associated with chemical bond dynamics is nearly absent since helium

is nearly chemically inert. Helium was first liquefied in 1908 by Heike Kamerlingh Onnes.

Soon after, attempts were made to solidify helium, but it would not solidify under its own

vapor pressure. Onnes also discovered that helium reached a maximum density at 2.2K, and

when they went to cooler temperatures the helium would suddenly stop boiling1.

In 1923, the specific and latent heats were measured near 2.2K with signs of a discontinuity.

In 1927, this point was identified as the transition temperature between two phases of helium,

He-I (normal fluid) above the transition and He-II (superfluid) below. The year 1940 brought

about new advances for the theoretical side of understanding helium at low temperatures.

Laszlo Tisza was the first to explain the nature of the superfluid phase using a two-fluid

model. Lev Landau improved this model in the following years and developed the Landau

two-fluid model. The model refers to He-II as a mixture of two fluids. This superfluid

component represents the part of the 4He sample that occupies the lowest attainable quantum

state of the system, and hence it is a “Bose-Einstein Condensate” of the interacting system of

the 4He atoms. This superfluid possess no entropy and hence is at absolute zero temperature.

In the model the two fluids are completely mixed and non-interacting. The total density

of He-II is then the sum of the superfluid fraction and the normal fluid fraction. Above

the transition temperature the superfluid fraction is zero, while below the transition this

superfluid fraction increases with decreasing temperature, reaching 100% only at absolute

1William Moeur’s Ph.D. Thesis, UNM. 1997
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zero1. Heat transport is then described by a two-fluid convective process with no net fluid

flow, where the superfluid and normal fluid move in opposite directions to make the net fluid

flow zero, while only the entropic normal fluid transports heat energy. The superfluid flows

along any gradient in T , while the normal fluid travels against the gradient. Again, only the

normal fluid transports heat.

The phase transition for 4He is unique in that helium is the only material that does not

turn into a solid at sufficiently low temperatures under its own vapor pressure. It instead

has a phase transition to the superfluid He-II state. The phase diagram for 4He is shown in

Fig. 1. The transition between normal and superfluid helium occurs long the lambda line,

and each point on the lambda line is the static superfluid transition temperature Tλ(P ),

where P is pressure. This transition line has a negative slope as displayed in Fig. 1. The

slope, dTλ
dP
, is negative, causing the gradient in Tλ to point in the opposite direction of gravity.

The transition line is curved, but due to the small pressure variation over the 1cm tall cell,

it can be assumed to be locally linear near saturated vapor pressure(SVP) where the He-II,

He-I, and vapor phases meet. In one dimension, ~∇Tλ =
dTλ
dz
= ρg dTλ

dP
where ρ is the liquid 4He

density(at T = Tλ(SV P ), ρ ∼= 0.147
g

cm3 ), and ~g is the gravitational acceleration(g = 9.8
m
s
).

2.2 The Cell and Helium System

The experiments were performed on a cryostat that contains several stages of thermal

control. The experimental cell that contains the helium resides on the bottom stage of the

cryostat where the thermal isolation is adequate to permit temperature control near 2.2K

to within a fraction of a nanokelvin. The cell itself is a small metal cylinder that is 2.4cm

in diameter and about 1cm tall. The cell is capped by two metal end-plates that serve also

as heat sinks and sources. Both plates have heaters thermally connected to them. The top

plate heater provides a steady heat flux through the cell, and the bottom heater is used to

provide time varying heat that is used to measure the thermal properties described below.

w. m. schlingman (2004) 5
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Figure 1: The Phase Diagram for 4He: Ref. [9]

The steady heat flux flows from the top of the cell to the bottom of the cell, called the

heat-from-above (HfA) configuration. The heater on the top plate puts the heat into the cell

and the bottom plate is linked to a cooling stage that pulls the heat out at the same rate

when the cell reaches steady state. This cooling stage, which is maintained at its operating

temperature below Tλ to within a noise level of about 1 nanokelvin, is connected to the

cell bottom through a thermal resistance of 2,000 K
W
, which is much larger than any internal

thermal resistance in the cell (See Fig. 2). This causes the cell to be held in a state of constant

heat flux, so the cell is current biased, and no stage temperature is directly controlled on the

cell. This means the cell stage temperatures are free to self-adjust in any manner in response

to additional added heat, as long as the applied steady heat flux, Q, is maintained.

2.3 The Cell

The cell is designed to be azimuthally and radially symmetric, so it can be considered

a 1-dimensional entity with temperature variations only along its height. Of course there

w. m. schlingman (2004) 6



Figure 2: A Schematic Diagram of the Cell

are radial and azimuthal variations in the cell as well, but they are very small and below

the noise level, so they can be ignored. To measure the heat transport states in the helium

we need devices that can measure temperature to a very high precision at various positions

along the cell height. The two thermometers that are used to measure the helium tempera-

tures are located on the sidewalls of the cell with a spacing of 2.4mm between each other.

The cell sidewall consists of 75µm thick stainless steel, with two 125µm thick copper foils

penetrating the sidewall to provide a low thermal resistance path between the thermometer

that attaches to the foil and the helium at the probe’s position along the height of the cell.

These thermometers are called High Resolution Thermometers(HRTs).

2.4 High Resolution Thermometers

HRTs consist of the paramagnetic material Palladium Manganese2, PdMn, machined into

a cylinder and wrapped in a superconducting coil, and placed in a superconducting “flux

2B.J. Klemme, M.J. Adriaans, P.K. Day, D.A. Sergatskov, T.L. Aselage, R.V. Duncan, J. Low Temp.
Phys. 116 (1999).
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tube” that traps a constant magnetic field on the PdMn. The superconducting coil that is

wrapped around the PdMn cylinder is connected to a Superconducting Quantum Interfer-

ence Device(SQUID) so that any change in magnetic flux threading the PdMn is detected

by the SQUID. The paramagnetic material, PdMn, is maintained just above its Currie tem-

perature where it has a strong temperature dependent magnetic susceptibility. When PdMn

is placed in a constant magnetic field, it develops a magnetization that is proportional to

its susceptibility. Therefore, as the temperature changes the magnetic susceptibility changes

and so does the magnetization of the PdMn pill. The superconducting circuit detects this

change in magnetization using the SQUID. This flux change within the SQUID is calibrated

against the temperature change of the PdMn that induced it. Temperature changes as small

as 0.1nK in a one Hertz measurement bandwidth may be detected in this manner, and the

demonstrated drift of these devices is < 10−14K
s
.

When beginning an experimental run, the cell is first cooled down into the4He superfluid

state. With the cell entirely superfluid and hence with infinite thermal conductivity, we

apply a heat flux, ~Q, through the cell, and adjust the cooling stage temperature until steady

state is reached. Once this occurs, the heat flux is increased by a small amount, causing

He-II to slowly warm up until the cell reaches the critical temperature, Tc, where the SOC

state forms. The SOC state forms at the bottom of the cell and moves upward as more heat

is supplied to the cell. As explained in section 2.6, Tc is dependent on the heat flux put

through the sample of He-II3.

Tc(Q) = Tλ − Tλ

(

Q

Qo

)y

, y = .813± .012, Qo = 568± 200
W

cm2
, Tλ = 2.1768K

Higher values of heat flux, Q = | ~Q|, depress the critical temperature farther below Tλ, where

Tλ is the static superfluid transition temperature. Tc decreases with Q,
3 and in the limit that

Q goes to zero Tc reaches its maximum value at Tλ. This depression of Tc with Q is similar

3R.V. Duncan, G. Ahlers, and V. Steinberg Phys. Rev. Lett. 60, 1522 (1988).
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to the depression of the superconducting transition temperature in a wire as its electrical

current is increased.

2.5 Existence of the Self-Organized Critical State

When a heat flux Q flows from the top to bottom in a liquid helium cell that is close to

its superfluid transition temperature, such as the cell in Fig. 2, the helium in the cell can

self-organize such that the resulting temperature gradient, ~∇T , equals the gradient across

the cell of its superfluid transition temperature, ~∇Tλ, which, as discussed above, is due

to the pressure gradient across the sample, is a constant 1.273µK
cm
and ~∇Tλ points in the

opposite direction to ~g, where ~g is the acceleration due to Earth’s gravity. This has been

observed to occur as ~Q is varied over three orders of magnitude, as described in Moeur et.

al4. This is amazing, in that the thermal gradient across the cell remains at a constant

1.273µK/cm as ~Q is changed by over a factor of one thousand! While this self-organization

seems remarkable, it results naturally from the divergence in the thermal conductivity of 4He

at Tc, where Tc is the temperature where the superfluid’s perfect thermal conductivity fails

catastrophically as discussed above. This divergence in the 4He thermal conductivity has

been observed in many other experiments5 and has been understood using dynamic scaling

theory6. The microscopic nature of this SOC state for Q > 200 nW
cm2 , where Tsoc(Q) < Tλ, is

unclear and is the subject of current research7, Tsoc(Q) is the temperature at which the cell

fully self-organizes at a given Q.

But why does the liquid helium’s thermal conductivity diverge as Tc(Q) is approached from

above(by cooling the cell)? Since the superfluid transition is a continuous or “second order”

phase transition, fluctuations of the ordered phase in the disordered phase become large

4W. A. Moeur, P. K. Day, F-C. Liu, S. T. P. Boyd, M. J. Adriaans, R. V. Duncan Phys. Rev. Lett. 78,
2421 (1997).

5W.Y. Tam and G. Ahlers, Phys. Rev B 32, 5932 (1985; 33, 183 (1986). and M. Dingus, F. Zhong, and
H. Meyer, J. Low Temp. Phys. 65, 185 (1986).

6R.A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl, P. Szepfalusy, Phys. Rev. Lett. 18 (1967) 891.
7P.B. Weichman, J. Miller, J. Low Temp. Phys. 119 (2000).
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as the critical temperature, Tc, is approached from above. The “ordered phase” is the

superfluid phase which has infinite thermal conductivity, so the otherwise highly thermally

resistive helium is effectively shorted out by these fluctuations into the superfluid phase.

Hence the observed total thermal conductivity κ(defined as the reciprocal of the thermal

resistivity) ρ, of the normal fluid 4He very close to its critical point diverges as κ(ε) = κ◦ε
−x

where x ∼= 1
2
, κ◦ ' 10

−5 W
cm K

, and ε ≡ T−Tc(Q)
Tλ

is the measure of the distance of the 4He

from its critical point. Since the pressure dependence of Tc(Q) is the same as that of Tλ,

∇Tc(Q) = ∇Tλ = 1.273
µK

cm
at all Q. This self-organized state is easily predicted theoretically

by numerically integrating the static heat flow equation, −κ~∇T = ~Q, to obtain the thermal

profile across the cell with the singular κ at Tc, with the boundary conditions that Q enters

the top of the cell and is extracted from the bottom8.

Here is a theoretical treatment that describes the time-independent SOC state. Let the z-

axis be along the cell axis pointing up, opposing gravity. In one-dimension the heat transfer

equation ~Q = −κ~∇T becomes:

Q = κ
∂T

∂z
(1)

We know that on the SOC state

∂T

∂z
=
∂Tλ
∂z
≡ α = 1.273µK/cm (2)

Hence,

∂Tλ
∂z

=
Q

κ
(3)

so κmust increase in proportion toQ to keep dT
dz
= dTλ

dz
= constant. The thermal conductivity

of the SOC helium is described by

κ = κ◦ε
−x (4)

8William Moeur’s Ph.D Thesis UNM 1997
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Where ε is the reduced temperature, with κo ≈ 10
−5 W

cmK
, x ≈ .48 both of which have been

determined experimentally by Moeur et. al 9. Taking into consideration that we only have

one direction ~z we only have to deal with magnitudes. The 4He thermal conductivity is

defined as

κ =
Q

∇T
(5)

And thus on the SOC state, where ∇T = ∇Tλ, the thermal conductivity becomes:

κsoc =
Q

∇Tλ
(6)

Combining this and the power law dependence of κ on ε (eq. 4), the reduced temperature

on the SOC state is::

ε−xsoc =
Q

∇Tλ · κo
(7)

Hence the self organization temperature Tsoc(Q) is:

Tsoc − Tc
Tc

=

(

Q

κo · ∇Tλ

)
−1

x

(8)

Therefore each value of Q will correspond to a specific Tsoc(Q) value that permits the thermal

conductivity κ to achieve κsoc so that the cell can self-organize with ∇T = ∇Tλ.

2.6 New Propagating Mode

Recently a new temperature-entropy wave has been observed experimentally10 to prop-

agate only against the vector direction of ~Q on this new SOC state. This mode is easily

understood by integrating the full time dependent heat flow equation, as described below.

The temperature-entropy wave will only propagate along the SOC state when heat pulses are

9W. A. Moeur, P. K. Day, F-C. Liu, S. T. P. Boyd, M. J. Adriaans, R. V. Duncan Phys. Rev. Lett. 78,
2421 (1997).

10D. A. Sergatskov, A. V. Babkin, R. A. M. Lee, S. T. P. Boyd, R. V. Duncan Physica B. 329-333, 208
(2003).
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applied to the bottom plate in the HfA configuration10. This wave propagates only against

the heat current ~Q, hence from the bottom to the top of the cell. The time-dependent

heat diffusion equation is obtained by combining the heat energy continuity equation with

Fourier’s Law:

Csoc

∂T

∂t
= −~∇ · ~Q, ~Q = −κ~∇T (9)

Where Csoc is the heat capacity on the SOC state. Here κ depends on z since κ depends on

T , and hence varies across the cell due to the thermal gradient. In one-dimension:

Csoc

∂T

∂t
= κ

∂2T

∂z2
+

(

∂κ

∂z

)(

∂T

∂z

)

(10)

The first term on the RHS is the conventional result when κ is just a function of position,

and the second term on the RHS results from the gradient of κ. If we convert the equation to

reduced temperature, ε = T−Tc(Q)
Tλ

, and assume small heat pulses, ∂ε
∂z
¿ α

Tλ
, eq. 10 becomes:

Csoc(ε)
∂ε

∂t
= κ(ε)

∂2ε

∂z2
+ α

(

∂κ

∂ε

)(

∂ε

∂z

)

(11)

Where α ≡ dTλ
dz
, dε
dz
= 1

Tλ

(

dT
dz
−∇Tλ

)

. Recall that Tλ and Tc have the same gradient =

1.273µK
cm
. Also, dε

dt
= 1

Tλ

dT
dt
. Since κ = κoε

−x, ∂κ
∂ε
= −x·κ(ε)

ε
and eq. 11 becomes:

Csoc(ε)
∂ε

∂t
= κ(ε)

∂2ε

∂z2
−
αx

Tλ

κ(ε)

ε

∂ε

∂z
(12)

Now, let ε(z, t) = εsoc + δ(z, t), where δ(z, t) is composed of damped, Fourier components:

δ(z, t) =

∫

δ(k)e−Dk
2teik·(z±ut)dk (13)

Note that εsoc is the steady state solution that is independent of space and time. The (+)

selection in z ± ut corresponds to motion in the −z direction (along Q) and the (−) corre-

sponds to motion in the +z direction (against Q). D is the damping coefficient. Substitute

w. m. schlingman (2004) 12



eq. 13 into eq. 12, and in the linear limit δ(z, t)¿ εsoc:

Csoc(εsoc)(−Dk
2 ± iku) = κsoc(ik)

2 − (ik)

(

αxκsoc
εsoc

)

(14)

Solve for the real and imaginary components individually. From the imaginary component

we get

D =
κsoc
Csoc

=
Q

αCsoc

∝ Q (15)

assuming Csoc is not dependent on Q. If D varies linearly with Q then this will confirm that

Csoc is independent of Q. For the real part of eq. 14 the negative sign is the only non-trivial

solution, thus the wave only propagates only against the heat flow and with a velocity u,

where

u =
αxκsoc
TλCsoc

=
xQ

CsocTλ
·

(

Q

κoα

)
1

x

∝ Q3.1 (16)

This is the physical origin of the new SOC state temperature-entropy wave11.

3 The Self-Organized Critical State

Self-organized criticality occurs in many systems in Nature. In its most general form,

self-organization occurs when a system is driven away from equilibrium and self-adjusts to

its critical line12, where some generalized susceptibility diverges. In our case this critical line

is the lambda line in Fig. 1, and the generalized susceptibility is the thermal conductivity κ.

In this case the system is driven away from equilibrium by the heat flux Q.

11D. A. Sergatskov, A. V. Babkin, R. A. M. Lee, S. T. P. Boyd, R. V. Duncan Physica B. 329-333, 208
(2003).

12How Nature Works, Per Bak
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3.1 An Upper Heat Flux?

As discussed above,

κsoc =
| ~Q|

|~∇Tλ|
, ∇T = ∇Tλ =

Q

κ(εsoc)

Thus the conductivity of SOC helium must vary linearly with the magnitude of heat flux

passing through the cell. For larger values of Q, the superfluid helium (which has infinite

thermal conductivity only in the Q = 0 limit) begins to form a thermal gradient as well, with

∇TII ∼ Q3 where ∇TII is the superfluid temperature gradient that results from “mutual

friction” between the normal fluid and superfluid components as high counter flow velocities.

Define the superfluid thermal resistance

RII =
∇TII
Q

and the associated 4He-II conductivity:

κII ∝
1

RII

Since ∇TII ∝ Q3, eventually ∇TII > ∇Tλ as Q is increased. Define Qc as the heat flux

where ∇TII(Q = Qc) = ∇Tλ. Experimentally when Q exceeds Qc (Qc ≈ 30µW/cm2)13 the

SOC state may collapse. The nature of the self-organized critical state will be explored for

values of Q near and above Qc in an upcoming experiment, which is being taken cold now.

4 The Project

The bottom heater imparts a small sinusoidal heat flux through the cell that travels in the

opposite direction of ~Q. This time varying flux is only a small perturbation to the dynamics

of the cell helium, so its non-linear effects are ignored as explained above. When looking at

13D. A. Sergatskov, A. V. Babkin, R. A. M. Lee, S. T. P. Boyd, R. V. Duncan Physica B. 329-333, 208
(2003).
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the data, we know that the temperature-entropy wave will hit the bottom thermometer first

as it propagates against the direction of ~Q. When this happens the bottom thermometer

registers the sinusoidally varying temperature disturbance. As the wave travels through the

helium another 2.4mm, a certain time passes and hence the phase of the wave changes at

the upper probe. It takes a specific amount of time, ∆t for the wavefront to travel between

the probes, which is simply ∆t = 2.4mm
vsoc(Q)

, where vsoc(Q) is the velocity of the wave through

the helium. Hence, we can infer a velocity based on the phase shift, ∆φ = 2π∆t
τ
where

tau is the period of the applied oscillation, of the temperature-entropy wave between the

measurements made on the bottom and top HRTs. So the majority of the project involved

looking at data sets and attempting to determine the phase shifts between the top and

bottom thermometers. We tried this in many different ways, but only one algorithm seemed

to do the job well. All three methods will be discussed in the following subsections. We did

get one good data point giving a velocity of 10.1 ± .3mm
sec
at Q = 100 nW

cm2 , which appears to

fit with the previously measured data, as discussed below.

4.1 Fourier Transform

The first technique that we tried was a rudimentary Fourier Transform of the data. Let

s(t) be the data, then x(ω) = 1
T

∫ T

0
s(t)cos(ωt)dt, whence ω is the frequency of the drive.

Similarly, y(ω) = 1
T

∫ T

0
s(t)sin(ωt)dt. Care was taken to make sure that T was an integral

number of periods of the drive. We then integrated over the entire data set on the SOC

state keeping track of the cumulative integral. By taking the arctangent of y
x
at values of nτ ,

where n is an integer and τ is the period, we determine the phase of the wave relative to a

sinusoidal current drive. After doing this for both the temperatures measured at the top and

bottom probes, we subtract these phases from the top and bottom to determine the phase

shift. Absolute phase is irrelevant in this situation, since the phase shift at the bottom cell

end plate is unknown. However, relative phase is critical, as it shows the time displacement

of the wave as it passes by the two separate thermometers. With the time it takes for

w. m. schlingman (2004) 15



the wave to pass both thermometers, the velocity is then determined using v = 2.4mm
∆t

and

∆t = τ × ∆φ
2π
= ∆φ

ω
as τ = 2π

ω
.

One would think this technique would be very effective, and it is when noise-free artificial

data is used. But when actual noisy data is used, it performs poorly. It does not have very

good temporal resolution, and the phase shifts on many of the data sets were too small to

determine. With the phases being very small, tiny jitter developed a noisy set of phase-shift

data. Even with a line of best fit, or other ways of sampling determined in this way, the

phases were still hidden in the noise. After many weeks of manipulating and changing the

code, this method was incredibly slow, a resource hog, and hence not a reliable method of

data analysis.

4.2 Cross-Correlation

The next method of determining the phase was using an cross-correlation between the top

and bottom temperature measurements. In this case, the average temperature value was

subtracted off leaving the processed probe temperatures oscillating about zero. Then, the

bottom set of measurements was shifted by a single interval in time,∆t against the other.

I(∆t) =
1

T

∫ T

0

stop(t)sbot(t+∆t)dt (17)

The total integral was taken for each set. The total value of the integral, I(∆t) is then

plotted against ∆t to determine the maximum, where the corresponding ∆t is the time

delay we seek. This method ignored the fact that the time spacing between the individual

temperature measurements is not perfectly uniform. It assumed that the variations would

be small and if the same range of data was used each time the effects would be minimized.

This method works well at giving a good estimate to the phase shift. It shows a clear

sinusoidal variation in total value of the integral with respect to phase shift. The problems
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stem from the lack of resolution between the data points. In many cases, the peak value of

the integral would occur only after only one step. The maximum step was badly influenced

by noise, because the noise variations are large. This gave only a ridiculously rough estimate

of the phase shift. It works well for determining the phase-shift at a very quick glance. There

is no effective way to make this analysis technique more accurate for noisy data. On data

sets with a much higher temporal resolution between points, this technique may become a

handy way of determining phase shifts to an acceptable degree of accuracy.

4.3 Correlation With an External Sine Curve

This method is by far the most accurate and simple of all the methods attempted thus

far. It combines some of the aspects of each technique described above. It still multiplies

a sine function to each of the data/temperature series and then integrates over the entire

set. The information is then plotted and the trend is clearly sinusoidal. The phase is varied

over 2π, with the range 2π divided into however many pieces as needed to obtain the desired

phase resolution. In our case, data set was divided into 20 different sections, and the phase

resolution used on each section was 2π
10,000

. The phase is changed very slowly allowing for

tight resolution in the final set of information. With 10,000 steps between 0 and 2π the

phase can be determined accurately. The phase for the top and bottom waves are measured

individually and then the difference between them is determined by simply subtracting these

phases.

The data analysis shows an average measured speed of 10.1± .3mm
sec
. There is some error to

this, but it is much smaller than what was obtained using the pulsed Time of Flight(TOF)

technique14. The phase here does not depend on the input time spacings, since the phase

delay steps may be made very small. It just multiplies the data by the sinusoid shifted by

the phase delay, and plots this integral against the phase delay. This allowed us to clearly

14D. A. Sergatskov, A. V. Babkin, R. A. M. Lee, S. T. P. Boyd, R. V. Duncan Physica B. 329-333, 208
(2003).
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tell what the phase was even on high noise, low signals, since the average over many periods

effectively canceled the noise. This method gives high resolution over the entire region of

possible phase shifts. Any resolution can be taken from ten to millions of steps between 0 and

2π. So any periodic data with a well-defined frequency(for us the known drive frequency)

can be matched with an appropriate phase shift. This means noisy data can be used and a

decent value of phase can be found. As always, noise still plays a factor but this technique

is less sensitive to noise that the other methods.

4.4 Original Velocity Measurement Methods - Pulse Technique

The initial velocity measurements of this new propagation mode where made using the

pulsed TOF method14. This method is setup in exactly the same as discussed above, except

the bottom heater is not providing a continuously varying heat current forming the wave.

Instead, a single pulse is used and the time that the peak passes each probe is measured. This

is a simple way of determining the speed of propagation as a single pulse measured at two

different times will have a clear time delay because the rising, falling, and peaks of the pulse

will be displaced. The sinusoidally varying method allows for many more measurements to

be made over a period of time allowing random errors to effectively average to zero over

many periods of the drive. This reduces the amount of error in the measurements and allows

for more information to be extracted from the data.

5 Results and Methods

5.1 Data Preparation

This section will detail the method used to extract the phase difference out of the data.

It will also explain were the results came from and illustrate some of the difficulties that

were encountered along the way. To give an overview of how each file had to be dealt

with, examples of each stage will be provided. First, all systematic artifacts were removed
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from the data set. This data,which was taken by the SQUID, was clipped because of the

small dynamic range of the SQUID between resets. So the data must be recomposed into

a continuous sinusoidal curve by extracting the reset jumps. The next part of the process

is to remove any lines that record the same information that was recorded in the previous

measurement. This resulted from a registering error when the data was digitized. After the

data has been recomposed and cleaned†, it must be inspected visually to determine if it is

worth analyzing. The data in Fig. 3(a) is good, there are no major discontinuities near the

SOC state and there is a well defined SOC state. The SOC state is where the temperature

profile becomes horizontal. As explained in detail Moeur et al., the data becomes horizontal

when the temperature at the thermometers location along the cell height can no longer

change with time. This occurs when the helium at that height has self-organized, since

after that ∇T = ∇Tλ, and hence the temperature at that height can no longer change.

To determine the velocity of the SOC wave we start by selecting a time where both the

top and bottom thermometers are both measuring SOC helium. There is no temperature

difference between the upper and lower thermometers on the superfluid state(time less than

2, 000s in Fig. 3(a)), so the top and bottom data are offset by about 425nK in Fig. 3(a).

The SOC state is what is interesting us, so the data is chopped to display only the SOC

state. We also want to compare the two thermometers side be side, so a constant value of

∆z× dT
dz
= 0.24cm× 1.273µK

cm
must be subtracted from the SOC state data to bring the two

temperatures to the same baseline as shown in Fig. 3(b).

We next need to determine if the SOC data has a phase shift that may be resolved. Hence

we zoom in on the data that we just chopped. The result is shown in Fig. 4, where the

random noise in the data is visible. Note that the peak-to-peak variation of the data in

Fig. 4 is only about 2nK, so the noise of the measurements is apparent. Using the Fourier

technique is difficult, because the noise was amplified and caused problems when taking the

†We only had to do this for 5 sets, Q. Li cleaned and prepared the data for the majority of data sets.
The code to prepare the data was written by Q. Li and S.T.P. Boyd.
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(a) A sample of data that has only been
cleaned. The blue is the bottom temper-
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Figure 3: Plots of the data as they appear throughout the analysis process.

arctangent, resulting in noisy phase information. The data can now be analyzed numerically

knowing that there is a visible phase shift in the data that can be measured.

5.2 Locking Into the Data

This method was thought up after a long unsuccessful run at trying to get the other

methods to provide reliable phase information. It is a combination between the a soft lock-

in technique and the cross-correlation technique. It was built as a way around the problems

previously faced, to allow the program to step through the phase shift, and then to see how

valid that phase was. Beginning as a “guess and check method” it evolved into a self-sufficient

algorithm that can pick the phase shift off any periodic sinusoid. Figures 5(a) & 5(b) show

the sine curve as it passes over the data. Effectively, the phase of the sine curve is shifted

until it best agrees with the periodic variation of the noisy data. It is like moving a puzzle

piece into position, moving it until it fits into place. The code permits the user to define

how many sections the SOC state is divided into, and how small a phase step to increment.
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Figure 4: This is what the SOC state looks like after subtraction when we zoom in on it. The phase shift
is easily seen between the two data sets. The blue represents the bottom thermometer, and the red the top.

This allows the resolution to be set by the user. In this analysis 10,000 units between zero

and 2π was chosen to provide high resolution in a relatively short time. The next step is

to numerically integrate, over the entire range of the SOC state, the data multiplied by a

shifted sine curve, i.e. data(t)× sin(t+ φ). We change φ each time and record the value of

integration at each phase shift φ.

5.3 Pulling Out the Phase

Now that we have numerically integrated over the entire range of data and possible φ

values, the phase shift can be determined. By inspecting Fig. 6, the two curves represent

the total values of the integrals for each phase shift. When the sine curve is in phase with

the data, it gives the maximum value for the integral. When it is out of phase, it gives the

lowest. So we compare the two maxima in Fig. 6 and compute the difference to get the phase

delay. Where we find the maxima on the graph in Fig. 6 will give us fraction of 2π the phase

is, with the absolute phase for each curve, with respect to an unshifted sine curve, given by
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(a) A sample of when the sine curve is not
in phase with the data.
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(b) A sample of when the sine curve is in
phase with the data.

Figure 5: The sine curve is phase shifted until it best matches the period of the data.

φ1 or 2 = 2π ×
n

10,000
where n is the number of steps the program has iterated through. With

the “absolute” phase computed, we can determine the relative phase through subtraction.

This gives two possibilities for a phase difference, ∆φ = φ1−φ2 or ∆φ = 2π− (φ1−φ2). By

inspection of the original SOC data in Fig. 4 one of the possibilities is incorrect, since the

wave passes the lower thermometer first, leaving us with ∆φ = φ1 − φ2. When converted

back to time units,∆t = ∆φ
ω
, we can determine the velocity of the wave knowing the spacing

between the two thermometers is d = 2.4mm, where vsoc =
d
∆t
= 2.4mm× ω

∆φ
.

5.4 How Our Data Compares

After computing the phase shift and extrapolating the velocity from that, our measurement

must be compared to those made previously through a pulse technique. The plot in Fig. 7

shows the previously taken data15 as the red points and our data as the blue star in the

upper right corner. Our velocity of 10.1 ± .3mm
sec
at a heat flux Q = 100 nW

cm2 , fits right in

line with those taken previously. Since our data was taken at a higher value if Q, we have

extended the range in which the theory has been experimentally confirmed. We have another

15Data is from Sergatskov et al.
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Figure 6: Here is the phase information after the sine curve has undergone a phase change of n× 2π10−4

radians. The red curve corresponds to the bottom phase and the blue the top.

data point taken at very high levels of Q but we do not expect it to fit any range because it

does not fit into the linear limit of our assumptions, v = 36.5 ± .2mm
sec
. We also know that

our analysis routines work because we extracted a valid phase. With minor modifications,

the analysis tools we developed can be used on the other data sets to fill in the many points

that are missing from this plot. This will be done this coming summer.

6 Discussion

We originally set out to compute phases for any file that came along, but after many trials

and setbacks a change of focus was in order. This is when we came up with the idea of looking

for files with distinct readable phase shifts and working from there. After this was done, we

ended up with a single file that was useful to development of the code and beneficial to the

science involved. The other files do contain important information regarding other physical

measurements and will be studied, but at the time they did not meet the classification of

being useful for developing an algorithm that was effective at determining the phase. The
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Figure 7: Here is the velocity data known for 4He, vsoc ∼ Q3. The red points are from Sergatskov et al.

and the blue point our new data point. The line corresponds to the Q3 trend these points have, it is shifted
by an arbitrary amount.

process was slow for much of the semester as the Fourier technique was very time consuming

to write, modify, plan, and process. Not being incredibly versed in numerical methods, the

planning it took to get the process and mathematics into the computer to a while. It took

time to develop the code so it was robust enough to accept data instead of clean sample

data. In the end, it did not produce what we needed it to. Since it was complicated, the

idea was scrapped in favor of the more promising cross-correlation. This did not take as

much time to write, but finding the phase information took hours of testing and tweaking.

This method had a variety of difficulties due to the low time resolution in the data. The

cross-correlator tried to match up the sinusoids, but the time delay was two to three data

points so only a rough phase could be found. After hours of tweaking, the idea of hybridizing

the two in some way began to take shape. After trying elegant and mathematically rigorous

routines, it was the most rudimentary technique that provided what we sought. Although

computationally inefficient, it allows the phase shift to be found at a degree of precision

defined by the user, within the resolution of the data. Even when linear approximation does
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not allow the theory to fit the data, a well defined velocity can be extracted. Only one data

point has been extracted at the current time, but the algorithm will be used later on in the

analysis.

This analysis has been beneficial in planning next data collection runs. Starting out we

did not know what to look in the data to rate it as good or bad. Now knowing that we want

data with a clear phase shift and has good temporal resolution. If the data does not fit this

general description, the phase shift information will be hidden in the noise. Being able to

analyze new data in almost real time will also help the data collection process, making sure

the data being collected is providing the information being sought. In addition to providing

a new data point on Fig. 7, we have developed a technique to focus the experimental process

in the correct direction for acquiring more information about this new temperature-entropy

wave.
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