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General overview
PHYS/ECE 554 002: Advanced Optics II

CRN: 54520 & 54521

Description of the class

This class is a continuation from Advanced Optics I of the Fall Semester 2019. It covers three major sections: 
crystal optics; coherence; and Fourier optics.

The first section – crystal optics – is focused on optical response of dielectric and semiconductor crystals and 
covers the following topics: classical Lorentz oscillator model for ideal dielectric crystals; complex optical 
response; Kramer-Kronig relations; dispersion if optical response; quantum-mechanical model of optical 
response; overview of absorption mechanisms; tensor of optical response of anisotropic crystals; strong-field 
and non-perturbative effects; magneto-optic effects; electro-optic effects; acousto-optic effect; and applications 
of those effects in devices.

The second section – coherence – covers temporal and spatial coherence; coherence function; interference of 
partially coherent light; transmission of partially coherent light through optical systems; image formation; and 
Van-Cittert-Zernike theorem.

The third section – Fourier optics – includes analysis of 2D signals and systems; foundations of scalar diffraction 
theory; wave-optics and frequency analysis of optical imaging systems; applications of Fourier optics in spatial 
filtering, holography, and analog processing of optical information.

The fourth section includes a selected special topic. Offered are basics of plasmonics, introduction to fiber 
optics, optical tweezers, and fundamentals of quantum optics. Also, topics suggested by students will be under 
consideration for this section.

This class is calculus based. Complex algebra, Fourier transform, and series expansions are routinely utilized in 
the three major sections. This class also includes an oral presentation.



Sources
Recommended books:

Topic 1: Crystal optics:

• (P3) Frank L. Pedrotti, Leno M. Pedrotti, Leno S. Pedrotti, "Introduction to Optics", 3d edition.

• (FOX) Mark Fox, “Optical Properties of Solids”, 2nd Ed., Oxford University Press, 2010.

Topic 2: Coherence:

• (MF) Miles V. Klein, Thomas E. Furtak, “Optics”, 2nd or 3d Edition.

• (GS) Joseph W. Goodman, “Statistical Optics”, 2nd Ed.

Topic 3: Fourier Optics:

• (GF) Joseph W. Goodman, “Fourier Optics”, 2nd Ed.

Additional resources:

• (HK) Hartmut Haug, Stephan W. Koch, "Quantum Theory of the Optical and Electronic Properties of 
Semiconductors", 4th or later edition.

• Jacques I. Pankove, “Optical Processes in Semiconductors”.

• Max Born, Emil Wolf, "Principles of Optics", 6th or later edition.

• Lev D. Landau, E. M. Lifshitz and L. P. Pitaevskii, “Electrodynamics of Continuous Media”, 2nd Edition 
or later (Pergamon Press, 1984).



Workload 1
• Homework assignments

• There are planned 14 homework assignments this semester, approximately one assignment per 
week. Each assignment includes a few problems from the recommended textbooks and other 
sources. The assignments will be given throughout the semester a week before they are due. 
Homeworks must be turned in to instructor’s mailbox on the due date by 8:00 pm.

•

• Grading

• The final grade will be based on the homework assignments, mid-term exam, oral presentation 
and report, and final exam. The contributions to the final grade are as follows:

• Homework: 26% (2% each homework);

• Report and presentation: 14%

• Mid-term exam: 25%

• Final exam: 35%

•

• Exam dates (subject to change):

• Mid-term: 03/12 (no makeup date).

• Final exam: 05/12; makeup date: 05/14.



Workload 2
• Formal Report:

A formal report is focused on one of suggested topics related to fundamental concepts and/or 
applications. It can be your lab report or a part of your lab report if the report topic is acceptable for 
this class. The objective of this task is to master students’ writing skills and improve their style of 
technical/scientific writing. The report is prepared using LaTeX, which is a standard tool used in the 
scientific community in various areas including physics and engineering. The style should follow the 
format of a scientific paper from Physical Review, Optics Letters, or Applied Physics Letters. Length 
range is from 2 journal pages (minimum) to 4 journal pages (maximum). The report should be 
submitted to the instructor as a PDF file via e-mail (subject “Formal Report”) by noon of Thursday, 
05/07. The file name should include your last name in the style “Name_Report”. Formal reports and 
presentations are individual. Samples of journal styles and LaTeX/TeX templates will be provided by 
instructor via e-mail.

•

• Presentation:

The objective of this task is to improve the skills of public presentation on scientific and technical 
topics. You will deliver a presentation at the end of the semester on 05/07/20 on the topic of your 
Formal Report. Duration: 15 minutes of presentation + 5 minutes for questions/answers. It should 
cover fundamentals, relevant theoretical background, development/state-of-the-art in the field, and 
applications in science and/or technology. Slides for the presentation can be run from either 
instructor’s laptop or your own laptop. Preferable formats, tips for slide preparation, and suggestions 
on presentation style will be shared later.



Syllabus Topic 1: Crystal optics and nonlinear effects
• 1) Classical model of optical response of ideal dielectrics; dispersion; Kramer-Kronig relations.

• 2) Classical model of absorption by free carriers in solids; optical response of 
semiconductors.

• 3) Tensor of optical response; birefringence; polarization rotation (chirality); anisotropic 
reflectivity.

• 4) Basics of quantum theory of crystals; overview of absorption mechanisms in crystals.

• 5) Quantum theory of linear absorption in non-metal crystals; semiconductor Bloch 
equations.

• 6) Strong-field electron dynamics in crystals; laser-driven electron oscillations; non-
perturbative approaches; the Keldysh photoionization formula.

• 7) Crystals in magnetic fields: Faraday effect; Cotton-Mouton effect; Zeeman effect; Landau 
levels; magneto-absorption.

• 8) Crystals in electric fields: Pockels effect; Kerr effect; Stark effect; Bloch oscillations; Franz-
Keldysh effect.

• 9) Acousto-optic effect; crystal-optic devices.



Syllabus Topic 2: Coherence
1) Temporal coherence; quasimonochromatic light; spectral flux density; interference spectroscopy; 
coherence function; contrast of interference pattern; properties of coherence function; examples for 
typical models of light sources.

2) Statistical optics; autocorrelation function; second and third-order coherence functions; examples 
for quasimonochromatic and thermal light; influence of spectrum broadening; coherence time and 
spectral bandwidth; 

3) Spatial coherence; Young’s experiment; two-point and continuous sources; Van Cittert-Zernike 
theorem; proof of the theorem; assumptions of the theorem; examples; influence of frequency 
spread; transverse coherence; longitudinal coherence; coherence length.

4) Fluctuations; light as a stochastic process; basics of statistical description; correlation; correlation 
momenta; their relation to coherence functions of various orders; correlation interferometry; 
quantum analysis; quantum coincidence.

5) Transmission of partially coherent light through optical systems; image formation from incoherent 
objects; point spread function; extended sources of light; optical transfer function; correlation form of 
the optical transfer function (OTF); examples of OTFs for typical optical elements; OTFs of real optical 
systems.



Syllabus Topic 3: Fourier Optics
1) Analysis of 2D signals and systems: 2D Fourier analysis; local spatial frequency; linear systems; basics of 2D 
sampling theory.

2) Foundations of scalar diffraction theory: transition from vector to scalar model; Helmholtz equation; 
Fresnel-Kirchhoff diffraction; Rayleigh-Sommerfeld diffraction; Huygens-Fresnel principle; generalization to 
non-monochromatic waves; diffraction by boundaries; angular spectrum of plane waves.

3) Fresnel and Fraunhofer diffraction: the Fresnel approximation; the Fraunhofer approximation; examples of 
diffraction patterns.

4) Wave-optics analysis of coherent optical systems: phase transformation by thin lens; Fourier transforming 
properties of lenses; image formation under monochromatic illumination; analysis of complex coherent optical 
systems.

5) Frequency analysis of opticl imaging systems: general treatment of imaging systems; frequency response of 
diffraction limited coherent and incoherent imaging; effect of aberrations on frequency response; coherent vs 
incoherent imaging; resolution beyond the classical limit.

6) Applications in spatial filtering: wave-front modulation, spatial light modulators; diffractive optical elements.

7) Applications in analog optical information processing; incoherent and coherent image processing systems; 
the VanderLugt filter; the joint transform correlator; character recognition; image restoration; discrete analog 
optical processors.

8) Applications in holography: wave-front reconstruction problem; the hologram; the Leith-Upatnieks
hologram; image locations and magnification; some specific types of holograms; thick holograms; computer-
generated holograms; hologram degradation; holography with spatially incoherent light; some applications of 
holography.



Topic 4: Selected Special Topics

5-6 lectures; 2 homework

OPTIONS:

• 1) Basics of plasmonics.

• 2) Optical tweezers. 

• 3) Introduction to guided wave optics (fiber optics).

• 4) Radiation pressure and ponderomotive force.

• 5) Other topics if proposed by students.

Topic suggestions are welcome!



Tentative schedule



Topic 1: Crystal optics and nonlinear effects
LECTURE 1

Topics:

Classical model of optical response of ideal dielectrics: linear Lorentz model of an oscillator

Refractive index

Absorption

Dispersion

Kramer-Kronig relations

Multi-frequency oscillators; oscillator force

General structure of absorption spectrum of crystals.

Math tools:

Differential equations; Fourier transform; complex algebra; integration; functions of complex 
variables (poles; Cauchy formula for integrals)



Introduction
Optics of crystals – optical response of crystals to electromagnetic waves.

Measurable optical response:

refractive index n: n = c0/vphase; c0 - speed of light in vacuum

absorption coefficient α: F(x) = F0 exp(- α x)

Objective: express refractive index and absorption coefficient (optical constants) via microscopic parameters of 
the crystals related to the particles (atoms, molecules, electrons) constituting the crystals.

Traditional approach:

n, α complex dielectric function ε optical susceptibility χ model of particle dynamics driven by light

Magnetic field is neglected since magnetic force scales as vpart/c0. Typical values of  vpart are close to Fermi speed 
in crystals at room temperature (about 105 - 106 m/s) and is 2-3 orders of magnitude smaller than the force form 
electric field of light.

Models to calculate susceptibility from microscopic parameters:

- Classical (energy of the particles varies continuously) – Lorentz, Drude;

- Quantum (energy of the particles is quantized).



Classical model of optical response of ideal dielectrics
Non-polar dielectrics: spherical symmetry of electron clouds 

prior to light action.

NOTE: in polar dielectrics, the dipoles are

randomly oriented so that they produce

total time-averaged zero polarization.

Electric field of light stretches the clouds along the field direction 

and produces dipoles.

The classical model replaces the clouds and the atoms with a damped 

oscillator.

Origin of the damping: electron interactions with other electrons 

and atoms that result in energy transfer from the oscillating electron.

E(t)

Incident light wave



Linear Lorentz model
Dipole momentum of a single oscillator with charge q:

𝒑 = −𝑞𝒓

Polarization of volume V with volumetric density N of the

oscillators:

𝑷 =
1

𝑉
෍

𝑖

𝒑𝑖 = 𝑁 𝒑

For a system of identical oscillators:
𝑷 = −𝑁𝑞𝒓

Below we consider electrons as the oscillating particles: q = e – electron charge (1.6 x 10-19 Q).

Lorentz oscillator equation:

𝑚0

𝑑2𝒓

𝑑𝑡2
= −𝑒𝑬 𝑡 − 𝑚0𝜔0

2𝒓 − 𝑚0𝛾
𝑑𝒓

𝑑𝑡
In [Pedrotti] an elastic

constant is introduced: 

𝐾𝑆 = 𝑚0𝜔0
2

Acceleration; 
m0 – electron 
mass

Electric force Restoring force 
at natural 
frequency ω0

Frictional (damping) force 
at damping rate γ [1/s]



Solution of the oscillator equation

𝑚0

𝑑2𝒓(𝑡)

𝑑𝑡2
= −𝑒𝑬 𝑡 −𝑚0𝜔0

2𝒓(𝑡) − 𝑚0𝛾
𝑑𝒓(𝑡)

𝑑𝑡
Fourier transform: 𝒓(𝑡)՜

𝐹
𝒓(𝜔)

𝑬 𝑡 ՜
𝐹
𝑬 𝜔

𝑚0 −𝑗𝜔 2𝒓 𝜔 = −𝑒𝑬(𝜔) − 𝑚0𝜔0
2𝒓 𝜔 −𝑚0𝛾 −𝑗𝜔 𝒓 𝜔

After simplification – average travel of an oscillating electron:

𝒓 𝜔 = −
𝑒

𝑚0

𝑬(𝜔)

𝜔0
2 −𝜔2 − 𝑗𝜔𝛾

From definition of the dipole momentum: 𝒑 = −𝑒𝒓

𝒑 𝜔 =
𝑒2

𝑚0

𝑬(𝜔)

𝜔0
2 −𝜔2 − 𝑗𝜔𝛾

= 𝛼(𝜔)𝑬(𝜔)

Average polarizability of dipoles:

𝛼 𝜔 =
𝑒2

𝑚0

1

𝜔0
2 −𝜔2 − 𝑗𝜔𝛾



Towards the optical response
Material polarization is a part of constitutive relations:

𝑫 = 𝜀0𝑬 + 𝑷

Constitutive relation in terms of relative permittivity ε and susceptibility χ:
𝑫 = 𝜀0𝜀𝑬 = 𝜀0𝑬 + 𝜀0𝜒𝑬

Polarization to field relation: 𝑷 = 𝜀0𝜒𝑬

But in terms of average dipole momentum: 𝑷 𝜔 = 𝑁 𝒑 𝜔 = 𝑁𝛼 𝜔 𝑬 𝜔 = 𝜀0𝜒𝑬

That delivers susceptibility in terms of the microscopic model:

𝝌 𝝎 =
𝑵𝜶(𝝎)

𝜺𝟎
=

𝑵𝒆𝟐

𝜺𝟎𝒎𝟎

𝟏

𝝎𝟎
𝟐 −𝝎𝟐 − 𝒋𝝎𝜸

By introduction of plasma frequency: 𝝎𝑷
𝟐 =

𝑵𝒆𝟐

𝜺𝟎𝒎𝟎

the susceptibility receives its standard notation:

𝝌 𝝎 =
𝝎𝑷
𝟐

𝝎𝟎
𝟐 −𝝎𝟐 − 𝒋𝝎𝜸



Almost here: dielectric function (permittivity)

Now the oscillator model can deliver the dielectric function due to the 
permittivity to susceptibility relation: 

𝜀 𝜔 = 1 + 𝜒 𝜔 = 1 +
𝜔𝑃
2

𝜔0
2 −𝜔2 − 𝑗𝜔𝛾

It can be split into real and imaginary parts:
𝜺 𝝎 = 𝜺′ 𝝎 + 𝒋𝜺′′ 𝝎

Real part of permittivity:

𝜺′ 𝝎 = 𝟏 +𝝎𝑷
𝟐 𝝎𝟎

𝟐 −𝝎𝟐

𝝎𝟎
𝟐 −𝝎𝟐 𝟐

+𝝎𝟐𝜸𝟐

Imaginary part of permittivity:

𝜺′′ 𝝎 = 𝝎𝑷
𝟐 𝝎𝜸

𝝎𝟎
𝟐 −𝝎𝟐 𝟐

+𝝎𝟐𝜸𝟐



Towards the optical constants: Maxwell equations
Assuming: ideal dielectric that contains no free charges; no polarization (time-averaged 
polarization is zero):

𝛻𝑷 = 0

Displacement current: Ԧ𝒋 =
𝜕𝑷

𝜕𝑡
Wave equation for electric field:

𝑐0
2𝛻2𝑬 𝒓, 𝑡 =

𝜕2𝑬 𝒓, 𝑡

𝜕𝑡2
+
1

𝜀0

𝜕2𝑷 𝒓, 𝑡

𝜕𝑡2

Time-to-frequency and coordinate-to-wave vector Fourier transforms:

𝑬 𝒓, 𝑡 =
1

2𝜋
න
−∞

∞

𝑒−𝑗𝜔𝑡𝑑𝑡ම
−∞

∞

𝑬 𝒌,𝜔 𝑒𝑗𝒌𝒓𝑑3𝑘

delivers a dispersion relation:

𝑘2 =
𝜔2

𝑐0
2 1 + 𝜒(𝜔) =

𝜔2

𝑐0
2 1 +

𝜔𝑃
2

𝜔0
2 −𝜔2 − 𝑗𝜔𝛾

=
𝜔2

𝑐0
2 𝜀 𝜔 =

𝜔2

𝑐0
2 𝜀′ 𝜔 + 𝑗𝜀′′ 𝜔

Wave vector must be complex:
𝑘 𝜔 = 𝑘𝑅𝑒 𝜔 + 𝑗𝑘𝐼𝑚 𝜔



Connection to complex refractive index

Complex refractive index is introduced via the complex wave vector:
𝑘 𝜔 = 𝑘𝑅𝑒 𝜔 + 𝑗𝑘𝐼𝑚 𝜔

𝑘 𝜔 = 𝑘𝑅𝑒 𝜔 + 𝑗𝑘𝐼𝑚 𝜔 =
𝜔

𝑐0
෤𝑛(𝜔) =

𝜔

𝑐0
𝑛 𝜔 + 𝑗𝜅 𝜔

Here nRe is the usual refractive index, and κ is called extinction coefficient and 
is related to absorption coefficient.

For a plane monochromatic wave with the complex wave vector:

𝑬 𝒓, 𝑡 = 𝑬0𝑒
𝑗 𝒌𝒓−𝜔𝑡

Irradiance of the damped plane wave:
𝐼 𝑥 = 𝐼0𝑒

−𝛼𝑥

𝜶 𝝎 = 𝟐𝒌𝑰𝒎 𝝎 = 𝟐
𝝎

𝒄𝟎
𝜿 𝝎



Complex permittivity vs complex refractive index
General relation:

෤𝑛2 = 𝑛 𝜔 + 𝑗𝜅 𝜔
2
= 𝜀 𝜔 = 𝜀′ 𝜔 + 𝑗𝜀′′ 𝜔

Complex permittivity to optical constants (n and 𝜅) :

𝜺′ 𝝎 = 𝒏𝟐 𝝎 − 𝜿𝟐 𝝎 = 𝟏 +𝝎𝑷
𝟐 𝝎𝟎

𝟐 −𝝎𝟐

𝝎𝟎
𝟐 −𝝎𝟐 𝟐

+𝝎𝟐𝜸𝟐

𝜺′′ 𝝎 = 𝟐 𝒏 𝝎 𝜿 𝝎 = 𝝎𝑷
𝟐 𝝎𝜸

𝝎𝟎
𝟐 −𝝎𝟐 𝟐

+𝝎𝟐𝜸𝟐

Optical constants to real and imaginary parts of permittivity:

𝒏 =
𝟏

𝟐
𝜺′ + 𝜺′𝟐 + 𝜺′′𝟐

𝜿 =
𝟏

𝟐
−𝜺′ + 𝜺′𝟐 + 𝜺′′𝟐

where: 𝜺′ 𝝎 = 𝟏 +𝝎𝑷
𝟐 𝝎𝟎

𝟐−𝝎𝟐

𝝎𝟎
𝟐−𝝎𝟐

𝟐
+𝝎𝟐𝜸𝟐

and 𝜺′′ 𝝎 = 𝝎𝑷
𝟐 𝝎𝜸

𝝎𝟎
𝟐−𝝎𝟐

𝟐
+𝝎𝟐𝜸𝟐

Final 
results



Reflectivity

• For simplicity consider only normal incidence.

Amplitude reflection coefficient:

𝑟 𝜔 =
1 − 𝑛 𝜔 − 𝑗𝜅(𝜔)

1 + 𝑛 𝜔 + 𝑗𝜅(𝜔)

Power reflection coefficient:

𝑅 𝜔 = 𝑟 𝜔 𝑟∗(𝜔) =
1 − 𝑛 𝜔 2 + 𝜅2(𝜔)

1 + 𝑛 𝜔 2 + 𝜅2(𝜔)



Brief summary
Calculation of either complex susceptibility or complex permittivity delivers the 
optical constants and their scaling with frequency.

Also, reflectivity and transmissivity can be calculated from those values.

Next steps:

1) nonlinear oscillator – nonlinear optics;

2) Multiple oscillators – dispersion over extended range of wavelength;

3) Quantum oscillator – quantum-mechanical model.



Comment: local electric fields
Polarization to field relation: 

𝑷 = 𝜀0𝜒𝑬

Includes local electric field acting on the dipole rather than the electric field of incident light wave.

From electrodynamics: 𝑬𝐿 =
𝑷

3𝜀0
+ 𝑬

Polarization: 𝑷 𝜔 = 𝜀0𝜒𝑬𝑳 = 𝜀0𝜒
𝑷

3𝜀0
+ 𝑬

𝑷 𝜔 =
𝜀0𝜒𝑬

1 −
𝜒
3

=
𝜀0𝜔𝑃

2𝑬

𝜔0
2 − 𝜔2 − 𝑗𝜔𝛾

1

1 −
1
3

𝜔𝑃
2

𝜔0
2 − 𝜔2 − 𝑗𝜔𝛾

=
𝜀0𝜔𝑃

2𝑬

𝜔′0
2 − 𝜔2 − 𝑗𝜔𝛾

where

𝜔′0
2 = 𝜔0

2 −
1

3
𝜔𝑃
2

The local-field correction results in a shift of the resonance frequency of the Lorentz oscillators. This effect is 
frequently missed in many textbooks (but not in Pedrotti!).

The local-field corrections do not affect the functional form of permittivity and susceptibility.



Dispersion of refractive index and absorption

𝜿 =
𝟏

𝟐
−𝜺′ + 𝜺′𝟐 + 𝜺′′𝟐 where 𝜺′ 𝝎 = 𝟏 +𝝎𝑷

𝟐 𝝎𝟎
𝟐−𝝎𝟐

𝝎𝟎
𝟐−𝝎𝟐

𝟐
+𝝎𝟐𝜸𝟐

and 𝜺′′ 𝝎 = 𝝎𝑷
𝟐 𝝎𝜸

𝝎𝟎
𝟐−𝝎𝟐

𝟐
+𝝎𝟐𝜸𝟐

For transparent materials: 𝜔0
2 −𝜔2 ≫ 𝜔𝛾

Therefore:   𝜀′′ ≪ 𝜀′ and 𝜅 ≪ 𝑛

𝑛2 𝜔 = 𝜀′ 𝜔 = 1 + 𝜔𝑃
2

1

𝜔0
2 −𝜔2

Assuming 𝜔2 ≪ 𝜔0
2:

1

𝜔0
2 −𝜔2

≈
1

𝜔0
2 1 +

𝜔2

𝜔0
2 +

𝜔4

𝜔0
4

𝑛2 = 𝐴′ +
𝐵′

𝜆2
+
𝐶′

𝜆4
+⋯

Cauchy dispersion relation:

𝑛 = 𝐴 +
𝐵

𝜆2
+
𝐶

𝜆4
+⋯



Typical dispersion curve

Normal 
dispersion

ω

Normal 
dispersion

Anomalous 
dispersion



Experimental data: water solution n of NaCl

M. R. Querry, R. C. Waring, et al, J. Opt. Soc. Am. 62 (7) 849-855 (1972)



Towards Kramers-Kronig relations:
analytical properties of permittivity/susceptibility

Standard form of susceptibility:

𝜒 𝜔 =
𝜔𝑃
2

𝜔0
2 − 𝜔2 − 𝑗𝜔𝛾

= 𝜔𝑃
2 1

𝜔′0 + 𝜔 + 1/2𝑗𝛾
−

1

𝜔′0 − 𝜔 − 1/2𝑗𝛾

where 𝜔′0
2 = 𝜔0

2 −
𝛾2

4

• Two poles in the complex frequency plane.


