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Abstract

This review is concerned with the motion of a point scalar charge, a point electric charge,
and a point mass in a specified background spacetime. In each of the three cases the particle
produces a field that behaves as outgoing radiation in the wave zone, and therefore removes
energy from the particle. In the near zone the field acts on the particle and gives rise to a
self-force that prevents the particle from moving on a geodesic of the background spacetime.
The self-force contains both conservative and dissipative terms, and the latter are responsible
for the radiation reaction. The work done by the self-force matches the energy radiated away
by the particle.

The field’s action on the particle is difficult to calculate because of its singular nature: The
field diverges at the position of the particle. But it is possible to isolate the field’s singular
part and show that it exerts no force on the particle — its only effect is to contribute to the
particle’s inertia. What remains after subtraction is a smooth field that is fully responsible for
the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of
as a free (radiative) field that interacts with the particle; it is this interaction that gives rise
to the self-force.

The mathematical tools required to derive the equations of motion of a point scalar charge,
a point electric charge, and a point mass in a specified background spacetime are developed here
from scratch. The review begins with a discussion of the basic theory of bitensors (Section 2).
It then applies the theory to the construction of convenient coordinate systems to chart a
neighbourhood of the particle’s word line (Section 3). It continues with a thorough discussion
of Green’s functions in curved spacetime (Section 4). The review concludes with a detailed
derivation of each of the three equations of motion (Section 5).

(©Max Planck Society and the authors.
Further information on copyright is given at
http://relativity.livingreviews.org/Info/Copyright/
For permission to reproduce the article please contact livrev@aei.mpg.de.


http://www.physics.uoguelph.ca/poisson/research/
http://relativity.livingreviews.org/Info/Copyright/

Article Amendments

On author request a Living Reviews article can be amended to include errata and small
additions to ensure that the most accurate and up-to-date information possible is provided.
For detailed documentation of amendments, please go to the article’s online version at

http://www.livingreviews.org/lrr-2004-6

Owing to the fact that a Living Reviews article can evolve over time, we recommend to cite
the article as follows:

Eric Poisson,
“The Motion of Point Particles in Curved Spacetime”,
Living Rev. Relativity, 7, (2004), 6. [Online Article]: cited [<date>],
http://www livingreviews.org/lrr-2004-6

The date in ’cited [<date>]" then uniquely identifies the version of the article you are
referring to.



http://www.livingreviews.org/lrr-2004-6

Contents

1 Introduction and Summary 7
1.1 Invitation . . . . . . o 0 e e e e e e 7
1.2 Radiation reaction in flat spacetime . . . . . . ... ... ... L. 7
1.3 Green’s functions in flat spacetime . . . . . . . ... ... L. 9
1.4 Green’s functions in curved spacetime . . . . . . .. ... Lo 10
1.5 World line and retarded coordinates . . . . . .. .. .. ... . . L. 13
1.6 Retarded, singular, and radiative electromagnetic fields of a point electric charge . 15
1.7 Motion of an electric charge in curved spacetime . . . .. .. ... ... ... ... 16
1.8 Motion of a scalar charge in curved spacetime . . . . . . . . ... ... .. ..... 17
1.9 Motion of a point mass, or a black hole, in a background spacetime . . . . . . . .. 18
1.10 Evaluation of the self-force. . . . . . . . . . . . . . . .. ... .. . 20
1.11 Organization of this review . . . . . . . .. . . 22

2 General Theory of Bitensors 24
2.1 Synge’s world function . . . . . ... .o 24

2.1.1 Definition . . . . . .. L 24
2.1.2 Differentiation of the world function . . . . ... ... ... ... ...... 24
2.1.3 Evaluation of first derivatives . . . . . . . . ... ... ... ... ... .. 25
2.1.4  Congruence of geodesics emanating from ' . . . . .. ... ... ... ... 26
2.2 Coincidence limits . . . . . . . .. Lo 27
2.2.1 Computation of coincidence limits . . . . . . .. .. .. ... ... .. .. 27
2.2.2  Derivation of Synge’srule . . . . ... Lo L 28
2.3 Parallel propagator . . . . . . . L e e 29
2.3.1 Tetradon 0 . . . . . . . 29
2.3.2  Definition and properties of the parallel propagator . . . . . . ... ... .. 29
2.3.3 Coincidence limits . . . . . . .. ..o 30
2.4 Expansion of bitensors near coincidence . . . . . .. ... L. 31
2.4.1  General method . . .. .. . .. ... ... 31
2.4.2 Special cases . . . ... 32
2.4.3 Expansion of tensors . . . . .. ... oL Lo 33
2.5 Van Vleck determinant . . . . . . . ... . Lo 33
2.5.1 Definition and properties . . . . . . . . .. ... 33
2.5.2 Derivations . . . . . . . . . e e 34

3 Coordinate Systems 36

3.1 Riemann normal coordinates . . . . . .. ... .o L oo 36
3.1.1 Definition and coordinate transformation . . . . ... ... ... ... ... 36
3.1.2 Metric near @’ . . . . ... e e 36

3.2 Fermi normal coordinates . . . . . . . . . . ... e e 37
3.2.1 Fermi-Walker transport . . . . . . . . ... 37
3.2.2 Tetrad and dual tetrad on v . . . . . . . ... Lo oL 38
3.2.3 Fermi normal coordinates . . . . . ... ... L oL oL 38
3.2.4 Coordinate displacements near v . . . . . . . . . . ... ... 38
3.25 Metricnear v . . . . ..o 40
3.2.6 Thorne-Hartle coordinates . . . . . .. .. ... ... ... ... ..., 40

3.3 Retarded coordinates . . . . . . . ... L oL 42
3.3.1 Geometrical elements . . . . ... ... 42

3.3.2 Definition of the retarded coordinates . . . . . . . . . . ... ... ... .. 42



3.3.3 The scalar field r(z) and the vector field k*(z) . . . . ... ... ... ... 43

3.3.4 Frame components of tensor fields on the world line . . .. ... ... ... 44
3.3.5  Coordinate displacements near v . . . . . . ... ... L. 46
3.3.6 Metricnear v . . . . . ... e 46
3.3.7 Transformation to angular coordinates . . . . . . . .. ... ... ...... 47
3.3.8 Specializationtoa” =0=R,, . . ... ... .. ... 0. 49
3.4 Transformation between Fermi and retarded coordinates; advanced point . . . . . . 50
3.4.1 From retarded to Fermi coordinates . . . . . ... ... ... ... ..... 51
3.4.2 From Fermi to retarded coordinates . . . . ... .. ... ... .. .. ... 53
3.4.3 Transformation of the tetrads at x . . . . . . .. . ... .. ... ...... 54
3.4.4 Advanced point . . . . ... 56
Green’s Functions 58
4.1 Scalar Green’s functions in flat spacetime . . . . . . . ... ... oL 58
4.1.1 Green’s equation for a massive scalar field . . . . .. ... ... 0. 58
4.1.2 Integration over the source . . . . . . ... ... .. L. 58
4.1.3 Singularpart of g(o) . . . . ... 59
414 Smoothpartof g(o) . . . . . . .. 60
4.1.5 Advanced distributional methods . . . . . .. .. ... .o 0L 60
4.1.6  Alternative computation of the Green’s functions . . . . . . ... ... ... 62
4.2 Distributions in curved spacetime . . . . . ... ..o Lo 63
4.2.1 Invariant Dirac distribution . . . . . . . .. ... o oo oL 63
4.2.2  Light-cone distributions . . . . . . .. .. L o oo 64
4.3 Scalar Green’s functions in curved spacetime . . . . . ... .. ... ... ... .. 65
4.3.1 Green’s equation for a massless scalar field in curved spacetime . . . . . . . 65
4.3.2 Hadamard construction of the Green’s functions . . . . ... ... .. ... 65
4.3.3 Reciprocity . . . . . . . . e 67
4.3.4  Kirchhoff representation . . . . . . .. ... L oo 68
4.3.5 Singular and radiative Green’s functions . . . . . . . . ... ... L. 69
4.3.6 Example: Cosmological Green’s functions . . . . . ... .. ... ... ... 72
4.4 Electromagnetic Green’s functions . . . . . . ... oL oo 0oL 74
4.4.1 Equations of electromagnetism . . . . . ... ... L0000 74
4.4.2 Hadamard construction of the Green’s functions . . . . .. ... ... ... 74
4.4.3 Reciprocity and Kirchhoff representation . . . . . . . .. ... ... ... .. 76
4.4.4 Singular and radiative Green’s functions . . . . . . .. ... oL 76
4.5 Gravitational Green’s functions . . . . . . . ... oL oL oo 78
4.5.1 Equations of linearized gravity . . . . ... ... .. ... .. 78
4.5.2 Hadamard construction of the Green’s functions . . . ... ... ... ... 79
4.5.3 Reciprocity and Kirchhoff representation . . . . . . . ... .. ... ... .. 81
4.5.4 Singular and radiative Green’s functions . . . . . . ... ..o oL 81
Motion of Point Particles 83
5.1 Motion of a scalar charge . . . . . . . ... .. o 83
5.1.1 Dynamics of a point scalar charge . . . . ... ... ... ... ... . ... 83
5.1.2 Retarded potential near the world line . . . . . . ... .. ... ....... 84
5.1.3 Field of a scalar charge in retarded coordinates . . . . . ... .. ... ... 85
5.1.4 Field of a scalar charge in Fermi normal coordinates . . . . . ... ... .. 86
5.1.5  Singular and radiative fields . . . . . . ... ..o 0oL 88
5.1.6 Equations of motion . . . . ... ... oL L 91
5.2 Motion of an electric charge . . . . . . . . . L Lo 93



5.2.1 Dynamics of a point electric charge . . . . . . .. .. ... .. 0L 93

5.2.2 Retarded potential near the world line . . . . .. .. .. ... ....... 94
5.2.3 Electromagnetic field in retarded coordinates . . . .. ... .. ... .... 95
5.2.4  Electromagnetic field in Fermi normal coordinates . . . .. ... ... ... 96
5.2.5 Singular and radiative fields . . . . . . . ... oo 98
5.2.6 Equations of motion . . . . .. ... L Lo 100

5.3 Motion of a point mass. . . . . . . ... oL L 102
5.3.1 Dynamics of a point mass . . . . . . .. ... oo 102
5.3.2 Retarded potentials near the world line . . . .. ... ... ... ...... 105
5.3.3 Gravitational field in retarded coordinates . . . . . . . . . ... ... .. .. 106
5.3.4 Gravitational field in Fermi normal coordinates . . . . . . . . ... ... .. 107
5.3.5 Singular and radiative fields . . . . . .. ... oo oo 108
5.3.6 Equations of motion . . . .. ... oL 110
5.3.7 Gauge dependence of the equations of motion . . . . . . ... ... ... .. 111

5.4 Motion of a small black hole . . . . . . . . .. ... ... . ... .. 112
5.4.1 Matched asymptotic expansions . . . . . . . . . ... oL 112
5.4.2  Metric in the internal zone . . . . . .. ... oL Lo oL 115
5.4.3 Metric in the external zone . . . . . .. .. .. Lo oL 118
5.4.4 Transformation from external to internal coordinates . . . . . . .. ... .. 121
5.4.5  Motion of the black hole in the background spacetime . . . ... ... ... 123

5.5 Concluding remarks . . . . . ... L e 124
5.5.1 Conservation of energy-momentum . . . . . . .. ... L. L. 124
5.5.2  Averaging method . . . . .. ... 125
5.5.3 Detweiler-Whiting axiom . . . . . ... .. .. 0oL 126
5.5.4 Matched asymptotic expansions . . . . . . .. ..o L Lo oL 127
5.5.5 Evaluation of the gravitational self-force . . . . . . . .. .. ... ... ... 127
5.5.6  Beyond the self-force . . . . . ... Lo o oL 129

6 Acknowledgments 130

References 131






The Motion of Point Particles in Curved Spacetime 7

1 Introduction and Summary

1.1 Invitation

The motion of a point electric charge in flat spacetime was the subject of active investigation
since the early work of Lorentz, Abrahams, and Poincaré, until Dirac [25] produced a proper
relativistic derivation of the equations of motion in 1938. (The field’s early history is well related
in [52].) In 1960 DeWitt and Brehme [24] generalized Dirac’s result to curved spacetimes, and their
calculation was corrected by Hobbs [29] several years later. In 1997 the motion of a point mass in
a curved background spacetime was investigated by Mino, Sasaki, and Tanaka [39], who derived
an expression for the particle’s acceleration (which is not zero unless the particle is a test mass);
the same equations of motion were later obtained by Quinn and Wald [49] using an axiomatic
approach. The case of a point scalar charge was finally considered by Quinn in 2000 [18], and this
led to the realization that the mass of a scalar particle is not necessarily a constant of the motion.

This article reviews the achievements described in the preceding paragraph; it is concerned with
the motion of a point scalar charge ¢, a point electric charge e, and a point mass m in a specified
background spacetime with metric go,3. These particles carry with them fields that behave as
outgoing radiation in the wave zone. The radiation removes energy and angular momentum from
the particle, which then undergoes a radiation reaction — its world line cannot be simply a geodesic
of the background spacetime. The particle’s motion is affected by the near-zone field which acts
directly on the particle and produces a self-force. In curved spacetime the self-force contains a
radiation-reaction component that is directly associated with dissipative effects, but it contains
also a conservative component that is not associated with energy or angular-momentum transport.
The self-force is proportional to ¢2 in the case of a scalar charge, proportional to e? in the case of
an electric charge, and proportional to m? in the case of a point mass.

In this review I derive the equations that govern the motion of a point particle in a curved
background spacetime. The presentation is entirely self-contained, and all relevant materials are
developed ab initio. The reader, however, is assumed to have a solid grasp of differential geometry
and a deep understanding of general relativity. The reader is also assumed to have unlimited
stamina, for the road to the equations of motion is a long one. One must first assimilate the basic
theory of bitensors (Section 2), then apply the theory to construct convenient coordinate systems
to chart a neighbourhood of the particle’s world line (Section 3). One must next formulate a
theory of Green’s functions in curved spacetimes (Section 4), and finally calculate the scalar,
electromagnetic, and gravitational fields near the world line and figure out how they should act on
the particle (Section 5). The review is very long, but the payoff, I hope, will be commensurate.

In this introductory section I set the stage and present an impressionistic survey of what the
review contains. This should help the reader get oriented and acquainted with some of the ideas
and some of the notation. Enjoy!

1.2 Radiation reaction in flat spacetime

Let us first consider the relatively simple and well-understood case of a point electric charge e
moving in flat spacetime [52, 30, 56, 47]. The charge produces an electromagnetic vector potential
A“ that satisfies the wave equation

OA® = —4nj® (1)

together with the Lorenz gauge condition d,A% = 0. (On page 294 in [30] Jackson explains why
the term “Lorenz gauge” is preferable to “Lorentz gauge”.) The vector j* is the charge’s current
density, which is formally written in terms of a four-dimensional Dirac functional supported on
the charge’s world line: The density is zero everywhere, except at the particle’s position where
it is infinite. For concreteness we will imagine that the particle moves around a centre (perhaps
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another charge, which is taken to be fixed) and that it emits outgoing radiation. We expect that
the charge will undergo a radiation reaction and that it will spiral down toward the centre. This
effect must be accounted for by the equations of motion, and these must therefore include the
action of the charge’s own field, which is the only available agent that could be responsible for the
radiation reaction. We seek to determine this self-force acting on the particle.

An immediate difficulty presents itself: The vector potential, and also the electromagnetic field
tensor, diverge on the particle’s world line, because the field of a point charge is necessarily infinite
at the charge’s position. This behaviour makes it most difficult to decide how the field is supposed
to act on the particle.

Difficult but not impossible. To find a way around this problem I note first that the situation
considered here, in which the radiation is propagating outward and the charge is spiraling inward,
breaks the time-reversal invariance of Maxwell’s theory. A specific time direction was adopted
when, among all possible solutions to the wave equation, we chose A%, the retarded solution,
as the physically-relevant solution. Choosing instead the advanced solution Ag,, would produce
a time-reversed picture in which the radiation is propagating inward and the charge is spiraling
outward. Alternatively, choosing the linear superposition

a 1 @ a
AS = 5 (Aret + Aadv) (2)

would restore time-reversal invariance: Outgoing and incoming radiation would be present in equal
amounts, there would be no net loss nor gain of energy by the system, and the charge would not
undergo any radiation reaction. In Equation (2) the subscript ‘S’ stands for ‘symmetric’, as the
vector potential depends symmetrically upon future and past.

My second key observation is that while the potential of Equation (2) does not exert a force on
the charged particle, it is just as singular as the retarded potential in the vicinity of the world line.
This follows from the fact that A, AS;,, and Ag all satisfy Equation (1), whose source term is
infinite on the world line. So while the wave-zone behaviours of these solutions are very different
(with the retarded solution describing outgoing waves, the advanced solution describing incoming
waves, and the symmetric solution describing standing waves), the three vector potentials share
the same singular behaviour near the world line — all three electromagnetic fields are dominated
by the particle’s Coulomb field and the different asymptotic conditions make no difference close to
the particle. This observation gives us an alternative interpretation for the subscript ‘S’: It stands
for ‘singular’ as well as ‘symmetric’.

Because A§ is just as singular as Agf;, removing it from the retarded solution gives rise to a
potential that is well behaved in a neighbourhood of the world line. And because Ag is known not
to affect the motion of the charged particle, this new potential must be entirely responsible for the
radiation reaction. We therefore introduce the new potential

= AL — AF = 5 (A% — A%,) 3)

ret ~ 43S T 9 ret ~— “tadv
and postulate that it, and it alone, exerts a force on the particle. The subscript ‘R’ stands for
‘regular’, because A is nonsingular on the world line. This property can be directly inferred from
the fact that the regular potential satisfies the homogeneous version of Equation (1), OAf = 0;
there is no singular source to produce a singular behaviour on the world line. Since Af satisfies
the homogeneous wave equation, it can be thought of as a free radiation field, and the subscript
‘R’ could also stand for ‘radiative’.

The self-action of the charge’s own field is now clarified: A singular potential Ag can be removed
from the retarded potential and shown not to affect the motion of the particle. (Establishing this
last statement requires a careful analysis that is presented in the bulk of the paper; what really
happens is that the singular field contributes to the particle’s inertia and renormalizes its mass.)

Living Reviews in Relativity
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What remains is a well-behaved potential Af that must be solely responsible for the radiation
reaction. From the radiative potential we form an electromagnetic field tensor FY, = (%A?—B[;AS,
and we take the particle’s equations of motion to be

ma,, = fﬁ"t + eFEj,u”, (4)

where u# = dz* /dr is the charge’s four-velocity (z#(7) gives the description of the world line and 7
is proper time), a# = dut /dr its acceleration, m its (renormalized) mass, and f/., an external force
also acting on the particle. Calculation of the radiative field yields the more concrete expression

n wo, 2% o ny, y Yexe
ma’ = ext+%(5u+u u,,)?, (5)
in which the second-term is the self-force that is responsible for the radiation reaction. We observe
that the self-force is proportional to e?, it is orthogonal to the four-velocity, and it depends on the
rate of change of the external force. This is the result that was first derived by Dirac [25]'.

1.3 Green’s functions in flat spacetime

To see how Equation (5) can eventually be generalized to curved spacetimes, I introduce a new
layer of mathematical formalism and show that the decomposition of the retarded potential into
symmetric-singular and regular-radiative pieces can be performed at the level of the Green’s func-
tions associated with Equation (1). The retarded solution to the wave equation can be expressed
as

A%, (z) = / G &y (. 2" (') AV’ (6)

in terms of the retarded Green’s function G G, (z,2') = 05,0(t —t' — |z — @'|)/|x — @’|. Here
x = (t,x) is an arbitrary field point, 2’ = (#',&’) is a source point, and dV’ = d*2’; tensors at
x are identified with unprimed indices, while primed indices refer to tensors at x’. Similarly, the
advanced solution can be expressed as

o (@) = / G % (z, 27 (') AV’ (7)

in terms of the advanced Green’s function G %, (z, 2") = 6§,6(t—t'+|x—2'|) /|z—2'|. The retarded
Green’s function is zero whenever x lies outside of the future light cone of 2, and G %, (z,2) is
infinite at these points. On the other hand, the advanced Green’s function is zero whenever x lies
outside of the past light cone of z’, and G %, (z,2’) is infinite at these points. The retarded and
advanced Green’s functions satisfy the reciprocity relation

Gyol@' x) = Gzﬂ, (x,2"); (8)

this states that the retarded Green’s function becomes the advanced Green’s function (and vice
versa) when x and z’ are interchanged.

From the retarded and advanced Green’s functions we can define a singular Green’s function
by

Gy (x,2") = - [G S (z,2") + G % (2, 2")] (9)

N =

IDirac’s original expression actually involved the rate of change of the acceleration vector on the right-hand
side. The resulting equation gives rise to the well-known problem of runaway solutions. To avoid such unphysical
behaviour I have submitted Dirac’s equation to a reduction-of-order procedure whereby da /dr is replaced with

m~LdfY,, /dr. This procedure is explained and justified, for example, in [17, 26].
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and a radiative Green’s function by

Gry (z,3") = G (x,2") — Gy (x,2') = £ [G 5% (,2") — G % (x,2)] . (10)

N~

By virtue of Equation (8) the singular Green’s function is symmetric in its indices and arguments:
G%,a(:c’,:c) = Giﬁ,(m,z’). The radiative Green’s function, on the other hand, is antisymmetric.
The potential

A3(@) = [ G0 @) av” (11)

satisfies the wave equation of Equation (1) and is singular on the world line, while
@) = [ Gt .07 @) av” (12

satisfies the homogeneous equation A® = 0 and is well behaved on the world line.

Equation (6) implies that the retarded potential at x is generated by a single event in spacetime:
the intersection of the world line and the past light cone of a’ (see Figure 1). I shall call this the
retarded point associated with  and denote it z(u); u is the retarded time, the value of the proper-
time parameter at the retarded point. Similarly we find that the advanced potential of Equation (7)
is generated by the intersection of the world line and the future light cone of the field point z. I
shall call this the advanced point associated with x and denote it z(v); v is the advanced time, the
value of the proper-time parameter at the advanced point.

z(v)
X X
Z(u)
Y Y
retarded advanced

Figure 1: In flat spacetime, the retarded potential at x depends on the particle’s state of motion at
the retarded point z(u) on the world line; the advanced potential depends on the state of motion at
the advanced point z(v).

1.4 Green’s functions in curved spacetime

In a curved spacetime with metric g,g the wave equation for the vector potential becomes
OA* — R% AP = —4mj®, (13)

where 0 = g8 V4V is the covariant wave operator and R,g is the spacetime’s Ricci tensor; the
Lorenz gauge conditions becomes V,A% = 0, and V,, denotes covariant differentiation. Retarded
and advanced Green’s functions can be defined for this equation, and solutions to Equation (13)
take the same form as in Equations (6) and (7), except that dV’ now stands for \/—g(z') d*a’.
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The causal structure of the Green’s functions is richer in curved spacetime: While in flat
spacetime the retarded Green’s function has support only on the future light cone of z’, in curved
spacetime its support extends inside the light cone as well; G it (x,2') is therefore nonzero when
x € I*(x2"), which denotes the chronological future of z’. This property reflects the fact that
in curved spacetime, electromagnetic waves propagate not just at the speed of light, but at all
speeds smaller than or equal to the speed of light; the delay is caused by an interaction between the
radiation and the spacetime curvature. A direct implication of this property is that the retarded
potential at z is now generated by the point charge during its entire history prior to the retarded
time u associated with x: The potential depends on the particle’s state of motion for all times
7 < u (see Figure 2).

z(v)
X X
z(u)
U Y
retarded advanced

Figure 2: In curved spacetime, the retarded potential at x depends on the particle’s history before
the retarded time w; the advanced potential depends on the particle’s history after the advanced
time v.

Similar statements can be made about the advanced Green’s function and the advanced solution
to the wave equation. While in flat spacetime the advanced Green’s function has support only
on the past light cone of 2/, in curved spacetime its support extends inside the light cone, and
G % (v, ') is nonzero when x € I~ (2'), which denotes the chronological past of z’. This implies
that the advanced potential at x is generated by the point charge during its entire future history
following the advanced time v associated with x: The potential depends on the particle’s state of
motion for all times 7 > v.

The physically relevant solution to Equation (13) is obviously the retarded potential A%, (z),
and as in flat spacetime, this diverges on the world line. The cause of this singular behaviour is
still the pointlike nature of the source, and the presence of spacetime curvature does not change
the fact that the potential diverges at the position of the particle. Once more this behaviour makes
it difficult to figure out how the retarded field is supposed to act on the particle and determine its
motion. As in flat spacetime we shall attempt to decompose the retarded solution into a singular
part that exerts no force, and a smooth radiative part that produces the entire self-force.

To decompose the retarded Green’s function into singular and radiative parts is not a straight-
forward task in curved spacetime. The flat-spacetime definition for the singular Green’s function,
Equation (9), cannot be adopted without modification: While the combination half-retarded plus
half-advanced Green’s functions does have the property of being symmetric, and while the resulting
vector potential would be a solution to Equation (13), this candidate for the singular Green’s func-
tion would produce a self-force with an unacceptable dependence on the particle’s future history.
For suppose that we made this choice. Then the radiative Green’s function would be given by the
combination half-retarded minus half-advanced Green’s functions, just as in flat spacetime. The
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resulting radiative potential would satisfy the homogeneous wave equation, and it would be smooth
on the world line, but it would also depend on the particle’s entire history, both past (through the
retarded Green’s function) and future (through the advanced Green’s function). More precisely
stated, we would find that the radiative potential at x depends on the particle’s state of motion
at all times 7 outside the interval u < 7 < v; in the limit where x approaches the world line,
this interval shrinks to nothing, and we would find that the radiative potential is generated by
the complete history of the particle. A self-force constructed from this potential would be highly
noncausal, and we are compelled to reject these definitions for the singular and radiative Green’s
functions.

The proper definitions were identified by Detweiler and Whiting [23], who proposed the following
generalization to Equation (9):

Gsly (z,2") = - [G % (x,2') + G % (w,2") — HYG (2, a")] . (14)

N =

The two-point function H, (x, z') is introduced specifically to cure the pathology described in the
preceding paragraph. It is symmetric in its indices and arguments, so that Gi 5 (z,2") will be also
(since the retarded and advanced Green’s functions are still linked by a reciprocity relation); and
it is a solution to the homogeneous wave equation, OH%, (v, 2") — R% (z)H 5 (z,2') = 0, so that
the singular, retarded, and advanced Green’s functions will all satisfy the same wave equation.
Furthermore, and this is its key property, the two-point function is defined to agree with the
advanced Green’s function when x is in the chronological past of z’: H%, (z,2') = G % (z,2")
when z € I~ (2'). This ensures that GgJ, (z,2") vanishes when  is in the chronological past of .
In fact, reciprocity implies that H, (z,2") will also agree with the retarded Green’s function when
2 is in the chronological future of z’, and it follows that the symmetric Green’s function vanishes
also when z is in the chronological future of z’.

The potential Ag(x) constructed from the singular Green’s function can now be seen to depend
on the particle’s state of motion at times 7 restricted to the interval u < 7 < v (see Figure 3).
Because this potential satisfies Equation (13), it is just as singular as the retarded potential in the
vicinity of the world line. And because the singular Green’s function is symmetric in its arguments,
the singular potential can be shown to exert no force on the charged particle. (This requires a
lengthy analysis that will be presented in the bulk of the paper.)

z(v)
X X
z(u)
Y v
singular radiative

Figure 3: In curved spacetime, the singular potential at x depends on the particle’s history during
the interval u < 7 < v; for the radiative potential the relevant interval is —oo < 7 < v.
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The Detweiler-Whiting [23] definition for the radiative Green’s function is then

Griy(z,2") = G (x,2") — Gy (x,2') = = [G S (w,2") — G % (2, 2") + H% (x,2")] . (15)

N

The potential Ag («) constructed from this depends on the particle’s state of motion at all times
7 prior to the advanced time v: 7 < v. Because this potential satisfies the homogeneous wave
equation, it is well behaved on the world line and its action on the point charge is well defined.
And because the singular potential Ag(z) can be shown to exert no force on the particle, we
conclude that Ag(z) alone is responsible for the self-force.
From the radiative potential we form an electromagnetic field tensor F aRB = VQAE — VAR,
and the curved-spacetime generalization to Equation (4) is
ma, = [+ enyu”, (16)
where u# = dz*/dr is again the charge’s four-velocity, but a* = Du*/dr is now its covariant
acceleration.

1.5 World line and retarded coordinates

To flesh out the ideas contained in the preceding Section 1.4 I add yet another layer of mathematical
formalism and construct a convenient coordinate system to chart a neighbourhood of the particle’s
world line. In the next Section 1.6 I will display explicit expressions for the retarded, singular, and
radiative fields of a point electric charge.

Let v be the world line of a point particle in a curved spacetime. It is described by parametric
relations z#(7) in which 7 is proper time. Its tangent vector is u* = dz*/dr and its acceleration
is a* = Dut/dr; we shall also encounter a* = Da* /dr.

On v we erect an orthonormal basis that consists of the four-velocity u* and three spatial
vectors e labelled by a frame index a = (1,2, 3). These vectors satisfy the relations g, utu” = —1,
guute, =0, and g, efey = dqp. We take the spatial vectors to be Fermi-Walker transported on
the world line: De# /dr = a,u*, where

aq(7) = a ek (17)

are frame components of the acceleration vector; it is easy to show that Fermi—Walker transport
preserves the orthonormality of the basis vectors. We shall use the tetrad to decompose various
tensors evaluated on the world line. An example was already given in Equation (17) but we shall
also encounter frame components of the Riemann tensor,

_ A v _ A v _ A v _p
Ra0v0(T) = Ryunvpebu’eyu?, Raope(T) = Rupvpehiuege?, Ropea(T) = Runvpeheperel,
(18)
as well as frame components of the Ricci tensor,

Roo(1) = Ryutu”, Roo(7) = Ryehu”, Roy(T) = Ryveley. (19)

We shall use 6, = diag(1,1,1) and its inverse 6% = diag(1,1,1) to lower and raise frame indices,
respectively.

Consider a point x in a neighbourhood of the world line . We assume that x is sufficiently close
to the world line that a unique geodesic links = to any neighbouring point z on . The two-point
function o(z, z), known as Synge’s world function [55], is numerically equal to half the squared
geodesic distance between z and x; it is positive if  and z are spacelike related, negative if they
are timelike related, and o(x,z) is zero if x and z are linked by a null geodesic. We denote its
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gradient do/0z* by 0,(z, z), and —o* gives a meaningful notion of a separation vector (pointing
from z to x).

To construct a coordinate system in this neighbourhood we locate the unique point 2’ = z(u)
on 7 which is linked to x by a future-directed null geodesic (this geodesic is directed from z’ to x);
I shall refer to x’ as the retarded point associated with x, and u will be called the retarded time.
To tensors at x’ we assign indices o, [, ...; this will distinguish them from tensors at a generic
point z(7) on the world line, to which we have assigned indices u, v, .... We have o(z,z’) = 0,
and —o® (z,2’) is a null vector that can be interpreted as the separation between 2/ and z.

Figure 4: Retarded coordinates of a point x relative to a world line v. The retarded time u selects
a particular null cone, the unit vector Q* = z%/r selects a particular generator of this null cone,
and the retarded distance r selects a particular point on this generator.

The retarded coordinates of the point x are (u,&®), where £% = —eg,aa/ are the frame com-
ponents of the separation vector. They come with a straightforward interpretation (see Figure 4).

The invariant quantity
r=\/Sap2920 = ugo® (20)

is an affine parameter on the null geodesic that links z to z’; it can be loosely interpreted as the
time delay between x and z’ as measured by an observer moving with the particle. This therefore
gives a meaningful notion of distance between x and the retarded point, and I shall call r the
retarded distance between x and the world line. The unit vector

Q= 3/r (21)

is constant on the null geodesic that links x to x’. Because Q¢ is a different constant on each
null geodesic that emanates from z’, keeping u fixed and varying Q% produces a congruence of
null geodesics that generate the future light cone of the point 2’ (the congruence is hypersurface
orthogonal). Each light cone can thus be labelled by its retarded time u, each generator on a given
light cone can be labelled by its direction vector £2¢, and each point on a given generator can be
labelled by its retarded distance r. We therefore have a good coordinate system in a neighbourhood
of .

To tensors at x we assign indices a, (3, .... These tensors will be decomposed in a tetrad
(ef,e) that is constructed as follows: Given x we locate its associated retarded point z’ on the
world line, as well as the null geodesic that links these two points; we then take the tetrad (uO‘/, eg‘/)
at ' and parallel transport it to x along the null geodesic to obtain (e, e5).
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1.6 Retarded, singular, and radiative electromagnetic fields of a point
electric charge

The retarded solution to Equation (13) is
A%(z) = e/ Gf#(x, z)ut dr, (22)
g

where the integration is over the world line of the point electric charge. Because the retarded
solution is the physically relevant solution to the wave equation, it will not be necessary to put a
label ‘ret’ on the vector potential.

From the vector potential we form the electromagnetic field tensor Fi,g, which we decompose
in the tetrad (e§, e) introduced at the end of Section 1.5. We then express the frame components
of the field tensor in retarded coordinates, in the form of an expansion in powers of r. This gives

Fao(u,7,Q%) = Fap(w)ef ()e] ()
1 1
= 50 = = (a0 — Q") + 3eRi002" 2 — <€ (GRao0f’ + Rapoc ')
1 1 1 .
+ 75¢ (5800 + Ruc2'Q° + R) Qo + geRag — ceRu Q' + Fg' + O(r),  (23)

Fop(u,7,Q%) = Fop(z)el(x)e) ()

e 1
= ; (aaQb - Qaab) + 56 (RaObc - RbOac + RaOcOQb - QaRbO(:O) Q°
1 )
—5¢ (Rao% — QaRuo) + Fip' + O(r), (24)
where
it = F (e R = el o] (25)

are the frame components of the “tail part” of the field, which is given by

-
Fii,(2") = 26/ Viw Gyppla, z)u dr. (26)

In these expressions, all tensors (or their frame components) are evaluated at the retarded point
2’ = z(u) associated with z; for example, a, = a,(u) = aa/e;“'. The tail part of the electromagnetic
field tensor is written as an integral over the portion of the world line that corresponds to the
interval —oo < 7 < u~ = u — 0F; this represents the past history of the particle. The integral
is cut short at u~ to avoid the singular behaviour of the retarded Green’s function when z(7)
coincides with z’; the portion of the Green’s function involved in the tail integral is smooth, and
the singularity at coincidence is completely accounted for by the other terms in Equations (23)
and (24).

The expansion of F,3(z) near the world line does indeed reveal many singular terms. We first
recognize terms that diverge when r — 0; for example the Coulomb field F,y diverges as 7~2 when
we approach the world line. But there are also terms that, though they stay bounded in the limit,
possess a directional ambiguity at r = 0; for example Fy;, contains a term proportional to Rgppc£2¢
whose limit depends on the direction of approach.

This singularity structure is perfectly reproduced by the singular field F 2,8 obtained from the
potential

Ag (z) = e/ Gg(x, z)ut dr, (27)
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where G, (2, 2) is the singular Green’s function of Equation (14). Near the world line the singular
field is given by

FaSO(uv T, Qa) = Fsﬁ(x)eg(x)eg(m)

e e 2, 1 c 1 .
= ﬁﬂa — ; ((la - abeQa) — geaa + geRboc()QbQ Q, — 66 (5Ra0boﬂb + RabOchQ )
1 1
+ 3¢ (5Ro0 + Rpe2Q° + R) Q, — 6eRabe +O(r), (28)

F3,(u,7,Q%) = F34(x)el (x)e}) ()

e 1
= ; (aaQb - Qaab) + 56 (RaObc — Ryoac + Raocoflp — QaRbOCO) Q°

1
— 56 (RaOQb — QaRbO) + 0(7’) (29)

Comparison of these expressions with Equations (23) and (24) does indeed reveal that all singular
terms are shared by both fields.

The difference between the retarded and singular fields defines the radiative field Fo%(:z:). Its
frame components are

2 1 .
FR — geda + geRaO + FBl L o), (30)
iy =Fa3' +0(r), (31)

and at 2’ the radiative field becomes

2 o~/ 1 / ’ ai
Fff,ﬁ, = 2eujy (9p/) + ug)ty) (3(17 + §R75,u6 ) + F;,Ig,, (32)

where a7 = Da"’ /dt is the rate of change of the acceleration vector, and where the tail term was
given by Equation (26). We see that F (1}5(95) is a smooth tensor field, even on the world line.

1.7 Motion of an electric charge in curved spacetime

I have argued in Section 1.4 that the self-force acting on a point electric charge is produced
by the radiative field, and that the charge’s equations of motion should take the form of ma, =
fﬁ"t—i—eF /E,u”, where fﬁ"t is an external force also acting on the particle. Substituting Equation (32)
gives

2 Dfy, 1 T , ,
mat =+ & @+ utu) (2205 4 ) 2, [ TRGH (a2 Y ar

(33)
in which all tensors are evaluated at z(7), the current position of the particle on the world line.
The primed indices in the tail integral refer to a point z(7’) which represents a prior position; the
integration is cut short at 7/ = 7= = 7— 07 to avoid the singular behaviour of the retarded Green’s
function at coincidence. To get Equation (33) I have reduced the order of the differential equation
by replacing @ with m~=!f%, on the right-hand side; this procedure was explained at the end of
Section 1.2.

Equation (33) is the result that was first derived by DeWitt and Brehme [24] and later corrected
by Hobbs [29]. (The original equation did not include the Ricci-tensor term.) In flat spacetime the
Ricci tensor is zero, the tail integral disappears (because the Green’s function vanishes everywhere
within the domain of integration), and Equation (33) reduces to Dirac’s result of Equation (5). In
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curved spacetime the self-force does not vanish even when the electric charge is moving freely, in
the absence of an external force: It is then given by the tail integral, which represents radiation
emitted earlier and coming back to the particle after interacting with the spacetime curvature. This
delayed action implies that, in general, the self-force is nonlocal in time: It depends not only on
the current state of motion of the particle, but also on its past history. Lest this behaviour should
seem mysterious, it may help to keep in mind that the physical process that leads to Equation (33)
is simply an interaction between the charge and a free electromagnetic field Ff‘ﬁ; it is this field
that carries the information about the charge’s past.

1.8 Motion of a scalar charge in curved spacetime

The dynamics of a point scalar charge can be formulated in a way that stays fairly close to the
electromagnetic theory. The particle’s charge ¢ produces a scalar field ®(x), which satisfies a wave
equation

(O—-¢R)D = —4mu (34)

that is very similar to Equation (13). Here, R is the spacetime’s Ricci scalar, and & is an arbitrary
coupling constant; the scalar charge density p(z) is given by a four-dimensional Dirac functional
supported on the particle’s world line . The retarded solution to the wave equation is

O(z) = q/ Gy(z,z)dr, (35)

where G (x, z) is the retarded Green’s function associated with Equation (34). The field exerts a
force on the particle, whose equations of motion are

ma” = q(g"" + u'u”)V, P, (36)

where m is the particle’s mass; this equation is very similar to the Lorentz-force law. But the
dynamics of a scalar charge comes with a twist: If Equations (34) and (36) are to follow from a
variational principle, the particle’s mass should not be expected to be a constant of the motion. It
is found instead to satisfy the differential equation

(il—:n = —qutV,, (37)
and in general m will vary with proper time. This phenomenon is linked to the fact that a scalar
field has zero spin: The particle can radiate monopole waves and the radiated energy can come at
the expense of the rest mass.

The scalar field of Equation (35) diverges on the world line, and its singular part ®g(z) must be
removed before Equations (36) and (37) can be evaluated. This procedure produces the radiative
field ®r(x), and it is this field (which satisfies the homogeneous wave equation) that gives rise to
a self-force. The gradient of the radiative field takes the form of

1 1 1 .
V. ®r = *ﬁ(l —68)qRuy + q (g + upuy) (3@” + 6RV>\U)\> + (I)Lall (38)
when it is evaluated of the world line. The last term is the tail integral
B =g [ V,6. (:(0)5(7) ar' (3)
—0o0

and this brings the dependence on the particle’s past.
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Substitution of Equation (38) into Equations (36) and (37) gives the equations of motion of a
point scalar charge. (At this stage I introduce an external force f.., and reduce the order of the

differential equation.) The acceleration is given by

1 Dfr, 1 T
ma* = "+ ¢* (6", + uu,) l?)m d:'Xt + ERVAUA + /700VVG+ (2(1),2(7")) dr'|, (40)
and the mass changes according to
dm 1 2 2,1 T / /
e _ﬁ(l —6£)¢°R — q°u 3 V.G (2(7),z(1")) dr'. (41)

These equations were first derived by Quinn [18]%.

In flat spacetime the Ricci-tensor term and the tail integral disappear, and Equation (40)
takes the form of Equation (5) with ¢?/(3m) replacing the factor of 2¢?/(3m). In this simple case
Equation (41) reduces to dm/dr = 0 and the mass is in fact a constant. This property remains true
in a conformally-flat spacetime when the wave equation is conformally invariant (£ = 1/6): In this
case the Green’s function possesses only a light-cone part, and the right-hand side of Equation (41)
vanishes. In generic situations the mass of a point scalar charge will vary with proper time.

1.9 Motion of a point mass, or a black hole, in a background spacetime

The case of a point mass moving in a specified background spacetime presents itself with a serious
conceptual challenge, as the fundamental equations of the theory are nonlinear and the very notion
of a “point mass” is somewhat misguided. Nevertheless, to the extent that the perturbation hag(z)
created by the point mass can be considered to be “small”, the problem can be formulated in close
analogy with what was presented before.

We take the metric gog of the background spacetime to be a solution of the Einstein field equa-
tions in vacuum. (We impose this condition globally.) We describe the gravitational perturbation
produced by a point particle of mass m in terms of trace-reversed potentials v,z defined by

1
YaB = haﬁ - 5 (g’yéh’yé) 9aps (42)

where hqg is the difference between go3, the actual metric of the perturbed spacetime, and gqz.
The potentials satisfy the wave equation

Oy*? 4+ 2Ry = — 16777 (43)

together with the Lorenz gauge condition fyo‘ﬂ 5 = 0. Here and below, covariant differentiation
refers to a connection that is compatible with the background metric, 0 = g*? Vo Vg is the wave
operator for the background spacetime, and 77 is the stress-energy tensor of the point mass; this
is given by a Dirac distribution supported on the particle’s world line . The retarded solution is

P (z) = 4m/ Gfﬁy(ac, 2)utu” dr, (44)
¥

where G fﬁ,/(x, z) is the retarded Green’s function associated with Equation (43). The perturba-

tion hqg(x) can be recovered by inverting Equation (42).

2His analysis was restricted to a minimally-coupled scalar field, so that & = 0 in his expressions. The extension
to an arbitrary coupling constant was carried out by myself for this review.
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Equations of motion for the point mass can be obtained by formally demanding that the
motion be geodesic in the perturbed spacetime with metric gog = gag + hag. After a mapping to
the background spacetime, the equations of motion take the form of

at = —% (g" + ulu”) (2hyn.p — hapa) uul. (45)
The acceleration is thus proportional to m; in the test-mass limit the world line of the particle is
a geodesic of the background spacetime.

We now remove hiﬁ(x) from the retarded perturbation and postulate that it is the radiative
field h(sw(a:) that should act on the particle. (Note that 75 5 satisfies the same wave equation as
the retarded potentials, but that fyg”ﬁ is a free gravitational field that satisfies the homogeneous
wave equation.) On the world line we have

Pyin = —4m (ugu Ry pae + Rupveun) w’us + hi%h, (46)

where the tail term is given by

i T 1 / ’
hyix = 4m/ Vi <G+uuwu' - 29uuG+ppM/,,,) (2(1), 2(7")) ut u” dr'. (47)

When Equation (46) is substituted into Equation (45) we find that the terms that involve the
Riemann tensor cancel out, and we are left with

at = 7% (g"" + u'u”) (thua)flp — hgi;ly) uuP. (48)
Only the tail integral appears in the final form of the equations of motion. It involves the current
position z(7) of the particle, at which all tensors with unprimed indices are evaluated, as well as
all prior positions z(7'), at which tensors with primed indices are evaluated. As before the integral
is cut short at 7/ = 7~ = 7 — 0" to avoid the singular behaviour of the retarded Green’s function
at coincidence.

The equations of motion of Equation (48) were first derived by Mino, Sasaki, and Tanaka [39],
and then reproduced with a different analysis by Quinn and Wald [49]. They are now known as the
MiSaTaQuWa equations of motion. Detweiler and Whiting [23] have contributed the compelling
interpretation that the motion is actually geodesic in a spacetime with metric g.g + hgﬂ. This
metric satisfies the Einstein field equations in vacuum and is perfectly smooth on the world line.
This spacetime can thus be viewed as the background spacetime perturbed by a free gravitational
wave produced by the particle at an earlier stage of its history.

While Equation (48) does indeed give the correct equations of motion for a small mass m
moving in a background spacetime with metric g.g, the derivation outlined here leaves much to
be desired — to what extent should we trust an analysis based on the existence of a point mass?
Fortunately, Mino, Sasaki, and Tanaka [39] gave two different derivations of their result, and the
second derivation was concerned not with the motion of a point mass, but with the motion of a
small nonrotating black hole. In this alternative derivation of the MiSaTaQuWa equations, the
metric of the black hole perturbed by the tidal gravitational field of the external universe is matched
to the metric of the background spacetime perturbed by the moving black hole. Demanding that
this metric be a solution to the vacuum field equations determines the motion of the black hole: It
must move according to Equation (48). This alternative derivation is entirely free of conceptual and
technical pitfalls, and we conclude that the MiSaTaQuWa equations can be trusted to describe the
motion of any gravitating body in a curved background spacetime (so long as the body’s internal
structure can be ignored).
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It is important to understand that unlike Equations (33) and (40), which are true tensorial
equations, Equation (48) reflects a specific choice of coordinate system and its form would not be
preserved under a coordinate transformation. In other words, the MiSaTaQuWa equations are not
gauge invariant, and they depend upon the Lorenz gauge condition 'yuﬁ s = 0. Barack and Ori [3]
have shown that under a coordinate transformation of the form x® — x® 4 £%, where x® are the
coordinates of the background spacetime and £% is a smooth vector field of order m, the particle’s
acceleration changes according to a* — a* + a[£]*, where

D2§l/
dr?

alé]* = (0%, + uu,) ( T R”Mupfwu*) (19)

is the “gauge acceleration”; D?¢” /dr?® = (€%, ,u*),uf is the second covariant derivative of £ in
the direction of the world line. This implies that the particle’s acceleration can be altered at will
by a gauge transformation; £% could even be chosen so as to produce a* = 0, making the motion
geodesic after all. This observation provides a dramatic illustration of the following point: The
MiSaTaQuWa equations of motion are not gauge invariant and they cannot by themselves produce
a meaningful answer to a well-posed physical question; to obtain such answers it shall always be
necessary to combine the equations of motion with the metric perturbation hog so as to form gauge-
mvariant quantities that will correspond to direct observables. This point is very important and
cannot be over-emphasized.

1.10 Evaluation of the self-force

To concretely evaluate the self-force, whether it be for a scalar charge, an electric charge, or a
point mass, is a difficult undertaking. The difficulty resides mostly with the computation of the
retarded Green’s function for the spacetime under consideration. Because Green’s functions are
known for a very limited number of spacetimes, the self-force has so far been evaluated in a rather
limited number of situations.

The first evaluation of the electromagnetic self-force was carried out by DeWitt and DeWitt [41]
for a charge moving freely in a weakly-curved spacetime characterized by a Newtonian potential
® < 1. (This condition must be imposed globally, and requires the spacetime to contain a matter
distribution.) In this context the right-hand side of Equation (33) reduces to the tail integral, since
there is no external force acting on the charge. They found the spatial components of the self-force
to be given by

M 2 ,dg
2 M 2
=e T+ —e , 50
fem 73 + 3 dt ( )
where M is the total mass contained in the spacetime, r = |x| is the distance from the centre of
mass, # = x/r, and g = —V® is the Newtonian gravitational field. (In these expressions the bold-

faced symbols represent vectors in three-dimensional flat space.) The first term on the right-hand
side of Equation (50) is a conservative correction to the Newtonian force mg. The second term
is the standard radiation-reaction force; although it comes from the tail integral, this is the same
result that would be obtained in flat spacetime if an external force mg were acting on the particle.
This agreement is necessary, but remarkable!

A similar expression was obtained by Pfenning and Poisson [46] for the case of a scalar charge.
Here J
M . 1 ,dg
-fscalar = 2€q27,73’r+ g 2%) (51)

where £ is the coupling of the scalar field to the spacetime curvature; the conservative term disap-
pears when the field is minimally coupled. Pfenning and Poisson also computed the gravitational
self-force acting on a massive particle moving in a weakly curved spacetime. The expression they
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obtained is in complete agreement (within its domain of validity) with the standard post-Newtonian
equations of motion.
The force required to hold an electric charge in place in a Schwarzschild spacetime was com-

puted, without approximations, by Smith and Will [54]. As measured by a free-falling observer
momentarily at rest at the position of the charge, the total force is
Mm oM\ M
() ew ®2)

and it is directed in the radial direction. Here, m is the mass of the charge, M is the mass of
the black hole, and r is the charge’s radial coordinate (the expression is valid in Schwarzschild
coordinates). The first term on the right-hand side of Equation (52) is the force required to keep a
neutral test particle stationary in a Schwarzschild spacetime; the second term is the negative of the
electromagnetic self-force, and its expression agrees with the weak-field result of Equation (50).
Wiseman [62] performed a similar calculation for a scalar charge. He found that in this case
the self-force vanishes. This result is not incompatible with Equation (51), even for nonminimal
coupling, because the computation of the weak-field self-force requires the presence of matter, while
Wiseman’s scalar charge lives in a purely vacuum spacetime.

The intriguing phenomenon of mass loss by a scalar charge was studied by Burko, Harte, and
Poisson [15] in the simple context of a particle at rest in an expanding universe. For the special
cases of a de Sitter cosmology, or a spatially-flat matter-dominated universe, the retarded Green’s
function could be computed, and the action of the scalar field on the particle determined, without
approximations. In de Sitter spacetime the particle is found to radiate all of its rest mass into
monopole scalar waves. In the matter-dominated cosmology this happens only if the charge of the
particle is sufficiently large; for smaller charges the particle first loses a fraction of its mass, but
then regains it eventually.

In recent years a large effort has been devoted to the elaboration of a practical method to
compute the (scalar, electromagnetic, and gravitational) self-force in the Schwarzschild spacetime.
This work originated with Barack and Ori [7] and was pursued by Barack [2, 3] until it was put
in its definitive form by Barack, Mino, Nakano, Ori, and Sasaki [6, 9, 11, 38]. The idea is to take
advantage of the spherical symmetry of the Schwarzschild solution by decomposing the retarded
Green'’s function G4 (x, z') into spherical-harmonic modes which can be computed individually. (To
be concrete I refer here to the scalar case, but the method works just as well for the electromagnetic
and gravitational cases.) From the mode-decomposition of the Green’s function one obtains a
mode-decomposition of the field gradient V,®, and from this subtracts a mode-decomposition of
the singular field V,®g, for which a local expression is known. This results in the radiative field
Vo®r decomposed into modes, and since this field is well behaved on the world line, it can be
directly evaluated at the position of the particle by summing over all modes. (This sum converges
because the radiative field is smooth; the mode sums for the retarded or singular fields, on the
other hand, do not converge.) An extension of this method to the Kerr spacetime has recently been
presented [14, 34, 10], and Mino [37] has devised a surprisingly simple prescription to calculate the
time-averaged evolution of a generic orbit around a Kerr black hole.

The mode-sum method was applied to a number of different situations. Burko computed the
self-force acting on an electric charge in circular motion in flat spacetime [12], as well as on a
scalar and electric charge kept stationary in a Schwarzschild spacetime [14], in a spacetime that
contains a spherical matter shell (Burko, Liu, and Soren [17]), and in a Kerr spacetime (Burko
and Liu [16]). Burko also computed the scalar self-force acting on a particle in circular motion
around a Schwarzschild black hole [13], a calculation that was recently revisited by Detweiler,
Messaritaki, and Whiting [21]. Barack and Burko considered the case of a particle falling radially
into a Schwarzschild black hole, and evaluated the scalar self-force acting on such a particle [4];
Lousto [33] and Barack and Lousto [5], on the other hand, calculated the gravitational self-force.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

29 Eric Poisson

1.11 Organization of this review

The main body of the review begins in Section 2 with a description of the general theory of
bitensors, the name designating tensorial functions of two points in spacetime. I introduce Synge’s
world function o(z,z’) and its derivatives in Section 2.1, the parallel propagator g% ,(z,z’) in
Section 2.3, and the van Vleck determinant A(z,z’) in Section 2.5. An important portion of the
theory (covered in Sections 2.2 and 2.4) is concerned with the expansion of bitensors when x is
very close to z’; expansions such as those displayed in Equations (23) and (24) are based on these
techniques. The presentation in Section 2 borrows heavily from Synge’s book [55] and the article by
DeWitt and Brehme [24]. These two sources use different conventions for the Riemann tensor, and
I have adopted Synge’s conventions (which agree with those of Misner, Thorne, and Wheeler [10]).
The reader is therefore warned that formulae derived in Section 2 may look superficially different
from what can be found in DeWitt and Brehme.

In Section 3 I introduce a number of coordinate systems that play an important role in later
parts of the review. As a warmup exercise I first construct (in Section 3.1) Riemann normal
coordinates in a neighbourhood of a reference point z’. I then move on (in Section 3.2) to Fermi
normal coordinates [36], which are defined in a neighbourhood of a world line 4. The retarded
coordinates, which are also based at a world line and which were briefly introduced in Section 1.5,
are covered systematically in Section 3.3. The relationship between Fermi and retarded coordinates
is worked out in Section 3.4, which also locates the advanced point z(v) associated with a field
point z. The presentation in Section 3 borrows heavily from Synge’s book [55]. In fact, I am much
indebted to Synge for initiating the construction of retarded coordinates in a neighbourhood of
a world line. T have implemented his program quite differently (Synge was interested in a large
neighbourhood of the world line in a weakly curved spacetime, while I am interested in a small
neighbourhood in a strongly curved spacetime), but the idea is originally his.

In Section 4 I review the theory of Green’s functions for (scalar, vectorial, and tensorial) wave
equations in curved spacetime. I begin in Section 4.1 with a pedagogical introduction to the
retarded and advanced Green’s functions for a massive scalar field in flat spacetime; in this simple
context the all-important Hadamard decomposition [28] of the Green’s function into “light-cone”
and “tail” parts can be displayed explicitly. The invariant Dirac functional is defined in Section 4.2
along with its restrictions on the past and future null cones of a reference point z’. The retarded,
advanced, singular, and radiative Green’s functions for the scalar wave equation are introduced in
Section 4.3. In Sections 4.4 and 4.5 I cover the vectorial and tensorial wave equations, respectively.
The presentation in Section 4 is based partly on the paper by DeWitt and Brehme [24], but it is
inspired mostly by Friedlander’s book [27]. The reader should be warned that in one important
aspect, my notation differs from the notation of DeWitt and Brehme: While they denote the tail
part of the Green’s function by —uv(z, '), I have taken the liberty of eliminating the silly minus
sign and I call it instead +V (x, 2’). The reader should also note that all my Green’s functions are
normalized in the same way, with a factor of —4m multiplying a four-dimensional Dirac functional
of the right-hand side of the wave equation. (The gravitational Green’s function is sometimes
normalized with a —167 on the right-hand side.)

In Section 5 I compute the retarded, singular, and radiative fields associated with a point
scalar charge (Section 5.1), a point electric charge (Section 5.2), and a point mass (Section 5.3). I
provide two different derivations for each of the equations of motion. The first type of derivation
was outlined previously: I follow Detweiler and Whiting [23] and postulate that only the radiative
field exerts a force on the particle. In the second type of derivation I take guidance from Quinn and
Wald [49] and postulate that the net force exerted on a point particle is given by an average of the
retarded field over a surface of constant proper distance orthogonal to the world line — this rest-
frame average is easily carried out in Fermi normal coordinates. The averaged field is still infinite
on the world line, but the divergence points in the direction of the acceleration vector and it can
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thus be removed by mass renormalization. Such calculations show that while the singular field
does not affect the motion of the particle, it nonetheless contributes to its inertia. In Section 5.4 1
present an alternative derivation of the MiSaTaQuWa equations of motion based on the method of
matched asymptotic expansions [35, 31, 58, 19, 1, 20]; the derivation applies to a small nonrotating
black hole instead of a point mass. The ideas behind this derivation were contained in the original
paper by Mino, Sasaki, and Tanaka [39], but the implementation given here, which involves the
retarded coordinates of Section 3.3 and displays explicitly the transformation between external
and internal coordinates, is original work.

Concluding remarks are presented in Section 5.5. Throughout this review I use geometrized

units and adopt the notations and conventions of Misner, Thorne, and Wheeler [10].
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2 General Theory of Bitensors

2.1 Synge’s world function
2.1.1 Definition

In this and the following sections we will construct a number of bitensors, tensorial functions of
two points in spacetime. The first is 2/, to which we refer as the “base point”, and to which we
assign indices o/, ', etc. The second is x, to which we refer as the “field point”, and to which we
assign indices a, 3, etc. We assume that x belongs to N'(z'), the normal convex neighbourhood of
2'; this is the set of points that are linked to ' by a unique geodesic. The geodesic § that links
x to &’ is described by relations z#(A) in which A is an affine parameter that ranges from Ag to
A1; we have z(A\g) = 2’ and z(\) = z. To an arbitrary point z on the geodesic we assign indices
i, v, ete. The vector t# = dz#/d) is tangent to the geodesic, and it obeys the geodesic equation
Dt# /dX\ = 0. The situation is illustrated in Figure 5.

Figure 5: The base point x’, the field point x, and the geodesic (3 that links them. The geodesic is
described by parametric relations z*(\), and t* = dz/d\ is its tangent vector.

Synge’s world function is a scalar function of the base point z’ and the field point z. It is

defined by
A1

o(z,2') = %()\1 - )\0)/)\ G (2)tHE7 dA, (53)
0
and the integral is evaluated on the geodesic § that links x to 2’. You may notice that o is invariant
under a constant rescaling of the affine parameter, A — A = a\ + b, where a and b are constants.
By virtue of the geodesic equation, the quantity € = g, t#t” is constant on the geodesic. The
world function is therefore numerically equal to %5()\1 — Xo)2. If the geodesic is timelike, then
A can be set equal to the proper time 7, which implies that ¢ = —1 and ¢ = —%(AT)Q. If the
geodesic is spacelike, then A can be set equal to the proper distance s, which implies that ¢ = 1
and 0 = %(As)? If the geodesic is null, then 0 = 0. Quite generally, therefore, the world function
is half the squared geodesic distance between the points z’ and z.
In flat spacetime, the geodesic linking  to 2’ is a straight line, and o = Jnas(x —2')*(z — 2’)?
in Lorentzian coordinates.

2.1.2 Differentiation of the world function

The world function o(z,z’) can be differentiated with respect to either argument. We let o, =
0o /Ox® be its partial derivative with respect to z, and o, = do/ Oz its partial derivative with
respect to z’. It is clear that o, behaves as a dual vector with respect to tensorial operations
carried out at x, but as a scalar with respect to operations carried out z’. Similarly, o, is a scalar
at = but a dual vector at z’.
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We let 0,3 = Vo, be the covariant derivative of o, with respect to x; this is a rank-2 tensor at
x and a scalar at 2’. Because o is a scalar at x, we have that this tensor is symmetric: 054 = 04g.
Similarly, we let 045 = 0g0, = %0/ 0z 9z be the partial derivative of o, with respect to z’;
this is a dual vector both at = and 2. We can also define o4/ = 930, = 920 /d2dz to be the
partial derivative of o,/ with respect to x. Because partial derivatives commute, these bitensors
are equal: 0go = 04p. Finally, we let 0,30 = Vg o, be the covariant derivative of o, with
respect to z’; this is a symmetric rank-2 tensor at ' and a scalar at .

The notation is easily extended to any number of derivatives. For example, we let o455 =
V5 V,V3Vao, which is a rank-3 tensor at = and a dual vector at 2’. This bitensor is symmetric
in the pair of indices a and 3, but not in the pairs a and 7, nor § and 7. Because Vy is
here an ordinary partial derivative with respect to 2, the bitensor is symmetric in any pair of
indices involving ¢’. The ordering of the primed index relative to the unprimed indices is therefore
irrelevant: The same bitensor can be written as 0543y Or 0as/3y O 0ags~, making sure that the
ordering of the unprimed indices is not altered.

More generally, we can show that derivatives of any bitensor . (x,z’) satisfy the property

Q...;ﬁo/... = Q.,.;a’ﬁ...a (54)

in which “...” stands for any combination of primed and unprimed indices. We start by establishing
the symmetry of Q_.,g with respect to the pair @ and . This is most easily done by adopting
Fermi normal coordinates (see Section 3.2) adapted to the geodesic 3, and setting the connection
to zero both at x and 2’. In these coordinates, the bitensor ., is the partial derivative of Q.
with respect to %, and €2, ., is obtained by taking an additional partial derivative with respect
to 7. These two operations commute, and . .g = Q. .o follows as a bitensorial identity.
Equation (54) then follows by further differentiation with respect to either x or 2.

The message of Equation (54), when applied to derivatives of the world function, is that while
the ordering of the primed and unprimed indices relative to themselves is important, their ordering
with respect to each other is arbitrary. For example, 0o/g/vs7c = Oa/g/s/ve = Orea’ /s’

2.1.3 Evaluation of first derivatives

We can compute o, by examining how o varies when the field point z moves. We let the new
field point be x + dz, and do = o(x + dz,2’) — o(x,2’) is the corresponding variation of the world
function. We let 3 + 03 be the unique geodesic that links z + dx to z’; it is described by relations
zH(A\) 4+ dz#(A), in which the affine parameter is scaled in such a way that it runs from Ay to A;
also on the new geodesic. We note that dz(A\g) = d2’ =0 and Jz(A\) = .

Working to first order in the variations, Equation (53) implies

A
! 1
So = AN / <gu,,,é“ 02" + 5 Guup 2" 5%) d\,
A

0

where AX = A1 — g, an overdot indicates differentiation with respect to A, and the metric and its
derivatives are evaluated on 3. Integrating the first term by parts gives
A M
do = AX[gu 2" 52”])\; - A)\/)\ (glwél’ + FWA,é”,éA) 0zP d.
0

The integral vanishes because z#(\) satisfies the geodesic equation. The boundary term at Ao is
zero because the variation §z# vanishes there. We are left with do = A)\gagt“(hﬁ , OT

ooz, 2") = (A — o) gapt®, (55)
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in which the metric and the tangent vector are both evaluated at z. Apart from a factor A\, we see
that o®(z, z') is equal to the geodesic’s tangent vector at z. If in Equation (55) we replace x by a
generic point z(\) on 3, and if we correspondingly replace A\; by A, we obtain o#(z,2) = (A—Xg)t#;
we therefore see that o/ (z,2’) is a rescaled tangent vector on the geodesic.

A virtually identical calculation reveals how o varies under a change of base point z’. Here
the variation of the geodesic is such that 6z(Ag) = d2’ and §z(\;) = 0z = 0, and we obtain
o = fA)\ga/g/t"‘/&cﬁ'. This shows that

(v (l’,x/) = 7()\1 - Ao)ga/g/t’gl, (56)

in which the metric and the tangent vector are both evaluated at z’. Apart from a factor A\, we
see that o (,2) is minus the geodesic’s tangent vector at .

It is interesting to compute the norm of o,. According to Equation (55) we have g,z0%c” =
(AN)2gaptt? = (AN)%e. According to Equation (53), this is equal to 20. We have obtained

g*Pon05 = 20, (57)

and similarly
go‘ B O/ 0pr = 20. (58)
These important relations will be the starting point of many computations to be described below.
We note that in flat spacetime, o, = 745(z — 2')? and 0o = —n4p(x — 2')? in Lorentzian
coordinates. From this it follows that 0ap = 0a/pr = —0ap = —0a/s = Nas, and finally, g*Po,5 =
4= ga,ﬁ/O'a/ﬁ/.

2.1.4 Congruence of geodesics emanating from a’

If the base point 2’ is kept fixed, o can be considered to be an ordinary scalar function of z. Accord-
ing to Equation (57), this function is a solution to the nonlinear differential equation % g*P 0a03 = 0.
Suppose that we are presented with such a scalar field. What can we say about it?

An additional differentiation of the defining equation reveals that the vector c® = ¢°“ satisfies

Ufﬁaﬁ =0, (59)

which is the geodesic equation in a non-affine parameterization. The vector field is therefore
tangent to a congruence of geodesics. The geodesics are timelike where o < 0, they are spacelike
where ¢ > 0, and they are null where 0 = 0. Here, for concreteness, we shall consider only the
timelike subset of the congruence.

The vector o

(0%
u® = 5012 (60)

is a normalized tangent vector that satisfies the geodesic equation in affine-parameter form: u Buﬁ =
0. The parameter A is then proper time 7. If A* denotes the original parameterization of the
geodesics, we have that d\*/dr = |20|*1/ 2, and we see that the original parameterization is sin-
gular at ¢ = 0.

In the affine parameterization, the expansion of the congruence is calculated to be

0 s _ _a
:W’ 0" =0%, —1, (61)

where 0* = (6V)~1(d/d\*)(6V) is the expansion in the original parameterization (6V is the con-
gruence’s cross-sectional volume). While 6* is well behaved in the limit ¢ — 0 (we shall see below
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that 6* — 3), we have that § — co. This means that the point 2’ at which o = 0 is a caustic of
the congruence: All geodesics emanate from this point.

These considerations, which all follow from a postulated relation %go‘ﬁaaag = o, are clearly
compatible with our preceding explicit construction of the world function.

2.2 Coincidence limits

It is useful to determine the limiting behaviour of the bitensors o as x approaches x’. We
introduce the notation
[Q.]= lim Q (z, 7’) = a tensor at x’
r—x

to designate the limit of any bitensor Q. (x,2’) as x approaches z’; this is called the coincidence
limit of the bitensor. We assume that the coincidence limit is a unique tensorial function of the
base point 2/, independent of the direction in which the limit is taken. In other words, if the limit
is computed by letting A\ — Ag after evaluating Q. (z,2’) as a function of A on a specified geodesic
[, it is assumed that the answer does not depend on the choice of geodesic.

2.2.1 Computation of coincidence limits

From Equations (53, 55, 56) we already have
6] =0, [0a] = [oa] = 0. (62)

Additional results are obtained by repeated differentiation of the relations (57) and (58). For
example, Equation (57) implies 0, = ¢*0,05, = 0”04y, or (gsy — 03,)t? = 0 after using
Equation (55). From the assumption stated in the preceding paragraph, o3, becomes independent
of ¥ in the limit + — 2/, and we arrive at [045] = garpr. By very similar calculations we obtain
all other coincidence limits for the second derivatives of the world function. The results are

[oap] = loap] = garps  [0ap] = [0ars] = —garpr- (63)

From these relations we infer that [0%,] = 4, so that [0*] = 3, where 0* was defined in Equation (61).
To generate coincidence limits of bitensors involving primed indices, it is efficient to invoke

Synge’s rule,
[o. ] =l0. ] —l0.al (64)

3

in which “...” designates any combination of primed and unprimed indices; this rule will be
established below. For example, according to Synge’s rule we have [048/] = [04a].5 — [0ags], and
since the coincidence limit of o, is zero, this gives us [043] = —[0ag] = —ga@, as was stated in
Equation (63). Similarly, [0a/s] = [0a].3 — [0/ 8] = —[08a’] = garp’- The results of Equation (63)
can thus all be generated from the known result for [o,4].

The coincidence limits of Equation (63) were derived from the relation o, = 0%, 05. We now
differentiate this twice more and obtain cngy = O’éaﬂ,yog + 05&505V + Jﬁa,YO'(sIB + 0'5040(%7. At
coincidence we have ,

[0asy] = [0°as] gt + [0°0,] g0 + 8%r (0584

or [0yap] + [08ay] = 0 if we recognize that the operations of raising or lowering indices and taking
the limit  — 2’ commute. Noting the symmetries of 0,3, this gives us [oays] + [0agy] = 0, or
2[oapy] — [R‘Samog] =0, or 2[0apy] = Réz;’ﬁ’v’ [0s/]. Since the last factor is zero, we arrive at

[Uaﬁw] = [Uocﬁv’} = [Uaﬁ’v’] = [Ua’ﬁ’v’] =0. (65)

The last three results were derived from [o,3,] = 0 by employing Synge’s rule.
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We now differentiate the relation o, = 0,05 three times and obtain
OaBys = Ueaﬂ’yéaé + O—Eaﬂfyo—ﬂ; + UeaﬂJO—E’Y + Jea'yéaéﬂ + 06&60575 + o—ea’yo—éﬁts + O—Eaéaéﬂ"/ + 0’60(0'5575.

At coincidence this reduces to [0agys] + [0assy] + [0ayss] = 0. To simplify the third term we
differentiate Ricci’s identity ooyg = dagy— R, 30e with respect to 2 and then take the coincidence
limit. This gives us [0a~ygs] = [0apys] + Rars7p4. The same manipulations on the second term
give [0as8y] = [0apsy] + Raryprsr. Using the identity oagsy = 0agys — Re 508 — B3 500 and
the symmetries of the Riemann tensor, it is then easy to show that [04gsy] = [0apgys]. Gathering
the results, we obtain 3 [0agys| + Rarv/ g6’ + Rarsrgr4» = 0, and Synge’s rule allows us to generalize
this to any combination of primed and unprimed indices. Our final results are

1
[0-01,3’75] = —g (Ra/,ylﬁ/(;l —+ RO/(V,B”Y’) R
1
[0apys] = 3 (Rarypror + Rarorpry)
1
[0-046'7'5/] = —g (Ral,ylﬁlél —|— Ra’é’ﬂ"y’) ; (66)
1
[Uaﬁ”y/5’] = —g (Ra’ﬂ”y’5’ =+ Ra”y’,@”ﬁ’) R
1
[O’alg/,y/é/] = —g (Ra/,ylﬂ/(S/ —+ Ralé/ﬂl.y/) .

2.2.2 Derivation of Synge’s rule

We begin with any bitensor Qap/ (z,2’) in which A = «... 3 is a multi-index that represents any
number of unprimed indices, and B’ = v’ ...4" a multi-index that represents any number of primed
indices. (It does not matter whether the primed and unprimed indices are segregated or mixed.)
On the geodesic 3 that links  to 2’ we introduce an ordinary tensor PM(z) where M is a multi-
index that contains the same number of indices as A. This tensor is arbitrary, but we assume that
it is parallel transported on (; this means that it satisfies PA;at"‘ = 0 at x. Similarly, we introduce
an ordinary tensor Q% (z) in which N contains the same number of indices as B’. This tensor is
arbitrary, but we assume that it is parallel transported on §; at z’ it satisfies QB:a,t”‘/ = 0. With
Q, P, and @ we form a biscalar H(z, ') defined by

H(z,2') = Qap (z,2")PA(2)QF (2).

Having specified the geodesic that links x to 2’, we can consider H to be a function of Ay and ;.
If Ay is not much larger than Ay (so that x is not far from z’), we can express H (A1, \g) as

OH
H()‘h)\O):H()\O;)\O)+()\1_>\O)8T + ...
1ixi=Xo
Alternatively,
OH
H()‘h)\()):H()‘la)‘l)_()\l_AO)a + ...,
0 1xog=A1
and these two expressions give
d OH OH
—H(Mo, Ao) = =— + — ,
g 1 R0 20) = 5 oons OA [y
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because the left-hand side is the limit of [H (A1, A1) — H (Ao, Ao)]/(A1 — Ag) when Ay — Ag. The

partial derivative of H with respect to g is equal to QAB/;a/tO"PAQB,, and in the limit this becomes

[QAB/;al]tO‘IPA/QB'. Similarly, the partial derivative of H with respect to A; is QAB/;at“PAQB',

and in the limit A; — Ao this becomes [Qap:.o]t* PA'QP'. Finally, H(X, \o) = [Qan/|PY QF',

and its derivative with respect to Ag is [QAB/];a/tO‘,PAlQB/. Gathering the results we find that
{[QAB/];Q/ — [QAB,;Q/] — [QAB’;Q]} to/PA/QB/ = 07

and the final statement of Synge’s rule,

[Qap ] = Qapie] + [Qasal, (67)

follows from the fact that the tensors P and @, and the direction of the selected geodesic 3,
are all arbitrary. Equation (67) reduces to Equation (64) when o is substituted in place of Q4p:.

2.3 Parallel propagator
2.3.1 Tetrad on 3

On the geodesic § that links z to 2’ we introduce an orthonormal basis e#(z) that is parallel
transported on the geodesic. The frame indices® a, b, ..., run from 0 to 3, and the frame vectors
satisfy

De¥
dX

where 7,5, = diag(—1, 1,1, 1) is the Minkowski metric (which we shall use to raise and lower frame
indices). We have the completeness relations

Guv egeg = Tab, =0, (68)

g = it e, (69)
and we define a dual tetrad e?,(z) by

nabg;w GE; (70)

a
€

this is also parallel transported on (. In terms of the dual tetrad the completeness relations take
the form

Guv = Tab 62657 (71)

and it is easy to show that the tetrad and its dual satisfy 3, e = 6%, and e} el = ¢%,. Equations (68,
69, 70, 71) hold everywhere on 3. In particular, with an appropriate change of notation they hold
at ' and z; for example, gog = 7ab e;e% is the metric at x.

2.3.2 Definition and properties of the parallel propagator

Any vector field A*(z) on 8 can be decomposed in the basis ef: A* = A?el, and the vector’s

frame components are given by A* = Atej. If A¥ is parallel transported on the geodesic, then

the coefficients A? are constants. The vector at z can then be expressed as A% = (A% e ey

&, or

A% (@) = g% (2,0 A% (&), gOh(a,a) = e () e (o). (72)

[}

3Note that I use sans-serif symbols for the frame indices. This is to distinguish them from another set of frame
indices that will appear below. The frame indices introduced here run from 0 to 3; those to be introduced later will
run from 1 to 3.
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The object g%, = ef'e2, is the parallel propagator: It takes a vector at ' and parallel-transports

it to x along the unique geodesic that links these points.
Similarly, we find that

’ ’ ’

AY (@) = %@ 2) A%(@), (@ w) = e (@) e (), (73)

and we see that g‘lc; = eaa'ez performs the inverse operation: It takes a vector at z and parallel-
transports it back to z’. Clearly,

gaa/gaﬁ = 60%7 gaagaﬁ/ = 6aﬁr7 (74)

and these relations formally express the fact that g“ol is the inverse of g<,.
The relation g%, = ef’e2, can also be expressed as 9.2 = e2e? | and this reveals that

’

9.5 (x,2) = go(a x), g8 x) = g% (x, ). (75)

The ordering of the indices, and the ordering of the arguments, are therefore arbitrary.
The action of the parallel propagator on tensors of arbitrary ranks is easy to figure out. For

example, suppose that the dual vector p, = p, €, is parallel transported on 5. Then the frame
components p, = p, ef are constants, and the dual vector at x can be expressed as p, = (pa/e;"/)eaa,
or

Pa() = g% (@', 2) par (). (76)

It is therefore the inverse propagator g‘lC; that takes a dual vector at z’ and parallel-transports it
to z. As another example, it is easy to show that a tensor A®” at 2 obtained by parallel transport
from 2’ must be given by

A (@) = g% (w, 2" ) gy (2, 2") AP (). (77)

Here we need two occurrences of the parallel propagator, one for each tensorial index. Because the
metric tensor is covariantly constant, it is automatically parallel transported on (3, and a special

case of Equation (77) is therefore gog = gaoig’% Jo' -
Because the basis vectors are parallel transported on 3, they satisfy e;";ﬁaﬂ = 0 at z and

eao‘;lﬁ,aﬁl =0 at /. This immediately implies that the parallel propagators must satisfy
gaa/;ﬁgﬁ = gaa/;ﬂloﬁl = 0, gaolhﬁa'ﬁ = gu(;;ﬁ/aﬁ/ =0. (78)

Another useful property of the parallel propagator follows from the fact that if t* = dz#/d\ is
tangent to the geodesic connecting x to ', then t* = ¢* ,t* . Using Equations (55) and (56), this
observation gives us the relations

’

Oa = —9%,0ar, Out = —g%,04. (79)

2.3.3 Coincidence limits

Equation (72) and the completeness relations of Equations (69) or (71) imply that

[9%/] = 6% (80)

Other coincidence limits are obtained by differentiation of Equations (78). For example, the relation
9%s.,0" = 0 implies g%, 507 + g"‘ﬁzwa% =0, and at coincidence we have

[gaﬁ’w] = [9%] = 0; (81)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

The Motion of Point Particles in Curved Spacetime 31

the second result was obtained by applying Synge’s rule on the first result. Further differentiation
gives

95760 + 960" + 9460 s + 970 5e = 0,
and at coincidence we have [9%,. 5] + [9%.5,] = 0, or 2[g%.5] + Ra[;,,y/(;, = 0. The coincidence

limit for g%, 5 = 9.5, can then be obtained from Synge’s rule, and an additional application
of the rule gives [¢%, . /5]. Our results are

1o 1.
9% 6] = =5 Bvs [9%00] = 5 By )
82
1o 1
(9% vs) = D) R, [9% ] = 2 Rgryrsr-

2.4 Expansion of bitensors near coincidence
2.4.1 General method

We would like to express a bitensor g (x,2’) near coincidence as an expansion in powers of
—o® (x,2'), the closest analogue in curved spacetime to the flat-spacetime quantity (z — z’)®. For
concreteness we shall consider the case of rank-2 bitensor, and for the moment we will assume that
the bitensor’s indices all refer to the base point z’.

The expansion we seek is of the form

’ 1 ! ’
Qg (2,2") = Awp + Awpry 07 + 3 Agrgrys a? a® +0O(%), (83)

in which the “expansion coefficients” Ay, Aa/g, and Aygs are all ordinary tensors at ';
this last tensor is symmetric in the pair of indices 7 and §’, and ¢ measures the size of a typical
component of % .

To find the expansion coefficients we differentiate Equation (83) repeatedly and take coincidence
limits. Equation (83) immediately implies [Qa/g:] = Aarp. After one differentiation we obtain
Qa/ﬁl;,yl = Aalﬁl;,yl —|— Aa/ﬁlel;,y/o'e _|_ Aa/B/E/UE’Yl —|— % Aa/ﬂlelL/;,ylae O'L + Aa/ﬁ/gluo'e ULV/ —+ 0(62), and
at coincidence this reduces to [Qa/g/:y/| = Aargriy + Aarpry. Taking the coincidence limit after two
differentiations yields [Qa/g/iys1] = Aargriyisr + Aarpryisr + Aarprsryr + Aarpryrsr. The expansion
coeflicients are therefore

Aa/ﬁl = [Qa'ﬁ/]a
Aarpry = Qarpriy] = Aarpriy (84)
Aa/ﬁ/,yl(;/ = [Qa’ﬁ/w’é’] — Aalﬁ/;,\rlél — Aa/ﬁl,y/;(sl — Aa/5/6/;,y/,
These results are to be substituted into Equation (83), and this gives us Qo g/ (z,2’) to second
order in e.

Suppose now that the bitensor is 2,3, with one index referring to 2’ and the other to z. The
previous procedure can be applied directly if we introduce an auxiliary bitensor Q.5 = gﬁ ﬁ,Qa/ 8
whose indices all refer to the point z’. Then Qaf@/ can be expanded as in Equation (83), and the

original bitensor is reconstructed as Qg = gﬁ ﬁlQa/ 8, OF
’ / 1 ’ ’
Qarp(z,2') = ¢ (Ba’ﬁ/ + Bagry 07 + 5 Bargryy 07 0 ) +0(e). (85)
The expansion coefficients can be obtained from the coincidence limits of Qq g and its derivatives.

It is convenient, however, to express them directly in terms of the original bitensor {,/3 by sub-
stituting the relation Q.5 = g’B ﬁ,Qa/ g and its derivatives. After using the results of Equation (80,
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81, 82) we find
B(X/B/ = |:§2(’¥/61|7
Barpy = [Qarpiy] = Barpriys (86)
1 v
Bafﬂl,yrgl = [Qalﬁ;,ylél] —|— 5 BaIEIR B”Ylé, — Ba’ﬁ’;'y’é’ — Barﬁl,yr;(;/ — BO‘/B'(;/?'Y/'
The only difference with respect to Equation (85) is the presence of a Riemann-tensor term in
Ba/ﬁ/,),/(;/,
Suppose finally that the bitensor to be expanded is €23, whose indices all refer to . Much as

we did before, we introduce an auxiliary bitensor Q5 = gaa,gﬁ 5§2ap whose indices all refer to 2,

we expand g/ s as in Equation (83), and we then reconstruct the original bitensor. This gives us

’ ’

/ 1 / ’
Qapl@,2') = g%9°% <Ca/5’ +Carpy 0" + 5 Carprys 07 o’ ) +0O(e%), (87)

and the expansion coefficients are now

Cop = [Qag],
Corpry = [Qapy] = Carpriys

/

1 / 1
Carﬁl,yrél = [Qaﬂ;,ylél] —|— 5 Ca,GIREB"‘/'(;’ + 5 Ce,ﬁ/REa"y’(S’ — Coc’ﬁ’;'y’é’ — Ca/ﬂl,yr;é/ — Calﬁ/é'/;,yl.
This differs from Equation (86) by the presence of an additional Riemann-tensor term in Cqr g/

2.4.2 Special cases

We now apply the general expansion method developed in the preceding Section 2.4.1 to the

bitensors ou/g/, 0ag, and oag. In the first instance we have Ayg = garg, Aargy = 0, and

Aa/ﬂ"y/é’ = —%(Ra/,ylﬂ/(S/ —+ Ralé/ﬂl,y/). In the second instance we have Ba/ﬁ/ = —guo’'p’, Ba/ﬁ’fy/ - 07

and BO/B/,Y/(;/ = *%(Rﬂ/a"y’c?’ —+ Rﬁlﬂ//a/(;/) — %Ra/ﬂ/yg/ = 7%RO/5/5/7/ — %Ra/g/.y/g/. In the third

instance we have Corgr = gargr, Carprr = 0, and Corgryrs = —5(Raryrprsr + Rargrrr). This gives
us the expansions

— 1 R Y58 £ O3 88

0oty = Jarp = 3 Rarypsr 07 07 + O(€7), (88)

’ 1 ’ ’
O/ = _gﬁﬁ (go/,@’ + 6 Raryprs oo’ > + 0(63)7 (89)
’ ’ ]_ 7 7
Tap = 909 <go/6’ — 5 Baygs o o’ ) +0(e%). (90)

Taking the trace of the last equation returns o, =4 — %Ryg/ oo + O(€?), or
* 1 o g 3
0" =3— gRa'ﬁ’U o’ +0(e%), (91)

where 0* = 0%, — 1 was shown in Section 2.1.4 to describe the expansion of the congruence of
geodesics that emanate from a’. Equation (91) reveals that timelike geodesics are focused if the
Ricci tensor is nonzero and the strong energy condition holds: When R/ g/ o P > 0 we see that
0* is smaller than 3, the value it would take in flat spacetime.
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The expansion method can easily be extended to bitensors of other tensorial ranks. In partic-
ular, it can be adapted to give expansions of the first derivatives of the parallel propagator. The
expansions

1

’ ’ 1 ’ ’ ’
( ) ¢ )
go{ﬁ,VY/ = 5 gaa'RaB"Y/[s' ag + 0(62), gaﬁl;,\/ = 5 go{a'g’y’yRaﬁ"y’(S’ o + 0(62) (92)

and thus easy to establish, and they will be needed in Section 4 of this review.

2.4.3 Expansion of tensors

The expansion method can also be applied to ordinary tensor fields. For concreteness, suppose
that we wish to express a rank-2 tensor A, at a point z in terms of its values (and that of its
covariant derivatives) at a neighbouring point #’. The tensor can be written as an expansion in
powers of —® (x,2'), and in this case we have

7 ’ ’ 1 ’ ’
Aag(x) = gaagﬁﬁ <Aa/ﬁl — Aa/glwl o7 + 5 Aa’ﬁ/;'y’él o’ O'(S ) + 0(63). (93)

If the tensor field is parallel transported on the geodesic 8 that links x to z’, then Equation (93)
reduces to Equation (77). The extension of this formula to tensors of other ranks is obvious.

To derive this result we express A, (z), the restriction of the tensor field on 3, in terms of its
tetrad components Aup(A) = A, elef. Recall from Section 2.3.1 that ef is an orthonormal basis
that is parallel transported on ; recall also that the affine parameter A ranges from Aq (its value at
z') to A1 (its value at x). We have Ay g (2') = Aab()\o)e‘("l/eg,7 App(z) = Aab()\l)ege%, and Aap(Ar1)
can be expressed in terms of quantities at A\ = Ay by straightforward Taylor expansion. Since, for
example,

dA Vet
(A1 = o) L (A1 = Xo) (Aﬂueé‘eg))\ = (A1 — )\O)AHV;,\egeﬁt)‘ = —Awpyes ef o,
d\ o ; Ao Ao

where we have used Equation (56), we arrive at Equation (93) after involving Equation (73).

2.5 Van Vleck determinant
2.5.1 Definition and properties
The van Vleck biscalar A(x,z’) is defined by

’

Az, z') = det [AO‘[;, (x,x')} , A”‘B/, (z,2") = —g°%, (@', x)0% (z,2'). (94)

[e%

As we shall show below, it can also be expressed as

det [0 (z,2)]
Az, z') = — =, (95)
NN
where g is the metric determinant at x and ¢’ the metric determinant at x’.
Equations (63) and (80) imply that at coincidence, [A%,] = §%, and [A] = 1. Equation (89),
on the other hand, implies that near coincidence

’ ’ 1 ! ! ’
A% = 0% + G R 55007 o +O(e%), (96)
so that .
A=1+ ERO/Q/ o o + O(). (97)
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This last result follows from the fact that for a “small” matrix a, det(1 +a) = 1 +tr(a) + O(a?).
We shall prove below that the van Vleck determinant satisfies the differential equation
L (80%),, =4 (98)
— (Ao -
A i« ’

which can also be written as (InA) 0% =4 — %, or

d
dX*

(InA)=3—6* (99)

in the notation introduced in Section 2.1.4. Equation (99) reveals that the behaviour of the van
Vleck determinant is governed by the expansion of the congruence of geodesics that emanate from
/. If 6* < 3, then the congruence expands less rapidly than it would in flat spacetime, and
A increases along the geodesics. If, on the other hand, 6* > 3, then the congruence expands
more rapidly than it would in flat spacetime, and A decreases along the geodesics. Thus, A > 1
indicates that the geodesics are undergoing focusing, while A < 1 indicates that the geodesics are
undergoing defocusing. The connection between the van Vleck determinant and the strong energy
condition is well illustrated by Equation (97): The sign of A — 1 near z’ is determined by the sign

of Ralg/ O'O‘IUB/.

2.5.2 Derivations

To show that Equation (95) follows from Equation (94) we rewrite the completeness relations at x,
g*P = nabegef, in the matrix form g~ = EnET, where E denotes the 4 x 4 matrix whose entries
correspond to e%. (In this translation we put tensor and frame indices on equal footing.) With e

denoting the determinant of this matrix, we have 1/g = —e?, or e = 1/,/—g. Similarly, we rewrite
the completeness relations at z’, ¢g*# = nabeglef , in the matrix form g’ ' = E'nE'", where
E’ is the matrix corresponding to & . With ¢’ denoting its determinant, we have 1/¢g’ = —e'?,

or ¢ =1/y/=¢’. Now, the parallel propagator is defined by g%, = 7*°g. g e?efl, and the matrix

)T

form of this equation is § = EnE’ Tg . The determinant of the parallel propagator is therefore

g=—ee'qg =/—g'/\/—g. So we have

det [gao/] =

T det [ga;} _ V=9 (100)

and Equation (95) follows from the fact that the matrix form of Equation (94) is A = —§
where o is the matrix corresponding to o,p/.

To establish Equation (98) we differentiate the relation o = %UVUW twice and obtain o,5 =

07,048 +070,4p . If we replace the last factor by 0,4, and multiply both sides by —g*'® we find

—1
g o,

A = =g% " (07604p +07Tap).
In this expression we make the substitution o3 = —gw/Ao‘ﬁ,,, which follows directly from Equa-
tion (94). This gives us

A% = 9°%97,0% A" + A%, 07, (101)
where we have used Equation (78). At this stage we introduce an inverse (A’l)o‘[;, to the van
Vleck bitensor, defined by Aaﬂl, (A—1)? ;, = 50‘7/,. After multiplying both sides of Equation (101) by

—1\6’

(A™H)7,, we find / / o

= gaagﬁﬁ’aaﬁ + (A_l)vﬁ’Aav’way’

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

The Motion of Point Particles in Curved Spacetime 35

and taking the trace of this equation yields

_
4 =07,

+(ATH, A%, o7,

We now recall the identity § Indet M = tr(M~*§ M), which relates the variation of a determinant

to the variation of the matrix elements. It implies, in particular, that (A*I)BOL,AO‘[;,;7 = (InA) 4,

and we finally obtain
4=0% + (InA) 40, (102)

which is equivalent to Equation (98) or Equation (99).
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3 Coordinate Systems

3.1 Riemann normal coordinates
3.1.1 Definition and coordinate transformation

Given a fixed base point z’ and a tetrad eg‘/ (2'), we assign to a neighbouring point z the four
coordinates
%= _6?1/(:17/) O'a/ (I, I/)a (103)
where €2, = nabgafgfefj/ is the dual tetrad attached to z’. The new coordinates * are called Rie-
mann normal coordinates (RNC), and they are such that 1,,224° = nabez,e%,ao‘/aﬂl = ga/gzaalaﬁl,
or

Napd23° = 20 (z, 2'). (104)

Thus, 7,5222P is the squared geodesic distance between z and the base point 2. It is obvious that
2’ is at the origin of the RNC, where #* = 0.

If we move the point x to x+dx, the new coordinates change to 24462 = —eaa,aa' (x+0z,a’) =
z? — ez,a% 627, so that
di® = —€},0% dxP. (105)
The coordinate transformation is therefore determined by 022 /0z° = —e;,ao‘é, and at coincidence
we have e o0
xr xr ’
{ ] =é,, [ - } =ey; (106)
ox® o2

the second result follows from the identities eg/egl = 6% and eg‘/e%, = 5‘“5/,.

It is interesting to note that the Jacobian of the transformation of Equation (105), J =
det(042/0z"), is given by J = /—gA(z, '), where g is the determinant of the metric in the
original coordinates, and A(x,2’) is the van Vleck determinant of Equation (95). This result fol-
lows simply by writing the coordinate transformation in the form 0i2/0xz° = fnabeg‘loa/ﬁ and
computing the product of the determinants. It allows us to deduce that in the RNC, the determi-

nant of the metric is given by
1
—g(RNC) = ——. 107
V=3(BNC) = o (107)

It is easy to show that the geodesics emanating from z’ are straight lines in the RNC. The proper
volume of a small comoving region is then equal to dV = A~!d*%, and this is smaller than the
flat-spacetime value of d*# if A > 1, that is, if the geodesics are focused by the spacetime curvature.

3.1.2 Metric near z’

We now would like to invert Equation (105) in order to express the line element ds? = Jas dz®dzP
in terms of the displacements dz®. We shall do this approximately, by working in a small neigh-
bourhood of z’. We recall the expansion of Equation (89),

’ / ’ 1 ’ ’ ’
B 3 3
O’aﬁ = —g 8 (6aﬁ/ + 6 Ra,y/ﬁl(gla’y g ) + 0(6 ),
and in this we substitute the frame decomposition of the Riemann tensor, R"‘;, gror = IPpd e e 6%, s,

and the tetrad decomposition of the parallel propagator, gﬁ B/ = ef /6%7 where e% (z) is the dual tetrad

at z obtained by parallel transport of e%, (z'). After some algebra we obtain

/ / 1 / PR
0% = —egch — s Rl 22! + O(e%),
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where we have used Equation (103). Substituting this into Equation (105) yields

di? = [51 + %R:bdmd + (9(3:3)] el dz”, (108)
and this is easily inverted to give

e dz® = [51 — %Racbdae%@d + O(x?’)] di®. (109)

This is the desired approximate inversion of Equation (105). It is useful to note that Equation (109),
when specialized from the arbitrary coordinates x® to 22, gives us the components of the dual tetrad
at = in the RNC.

We are now in a position to calculate the metric in the new coordinates. We have ds? =
Jop dzdzP = (nabeae%)dxadxﬁ = Nab(€3, da:a)(e% dz?), and in this we substitute Equation (109).
The final result is ds? = g.p d2?d2°, with

1
Gab = Tab — 5 Racbed i+ O(®). (110)

The quantities R,chg appearing in Equation (110) are the frame components of the Riemann tensor
evaluated at the base point z’,

’ ’ /g/ 6/
Racbd = Ra/py/g/(s/ 6? ez eb €4 (111)

and these are independent of Z2. They are also, by virtue of Equation (106), the components of
the (base-point) Riemann tensor in the RNC, because Equation (111) can also be expressed as

0x®] [0z7] [02°] [0x®
P = oo 522 552|558 [ e

which is the standard transformation law for tensor components.

It is obvious from Equation (110) that gap(2’) = 1ap and I'? (/) = 0, where I, = — % (R? 4 +
R?,4)39 + O(2?) is the connection compatible with the metric gap. The Riemann normal coordi-
nates therefore provide a constructive proof of the local flatness theorem.

3.2 Fermi normal coordinates
3.2.1 Fermi—Walker transport

Let v be a timelike curve described by parametric relations z#(7) in which 7 is proper time. Let
u* = dz"/dt be the curve’s normalized tangent vector, and let a* = Du*/dr be its acceleration
vector.
A vector field v* is said to be Fermi—Walker transported on + if it is a solution to the differential
equation
Do+
dr

Notice that this reduces to parallel transport if a* = 0 and -~y is a geodesic.

The operation of Fermi-Walker (FW) transport satisfies two important properties. The first
is that u* is automatically FW transported along ~; this follows at once from Equation (112) and
the fact that u* is orthogonal to a*. The second is that if the vectors v#* and w* are both FW
transported along 7, then their inner product v,w* is constant on v: D(v,w")/dr = 0; this also
follows immediately from Equation (112).

= (v,a”)u* — (v,u”) at. (112)
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3.2.2 Tetrad and dual tetrad on ~

Let z be an arbitrary reference point on «. At this point we erect an orthonormal tetrad (u”,e?)
where, contrary to former usage, the frame index a runs from 1 to 3. We then propagate each frame
vector on v by FW transport; this guarantees that the tetrad remains orthonormal everywhere on
~. At a generic point z(7) we have

Det!
dr

= (ayel) ut, guutu” = =1, guvehu” =0, Juvehey = dap. (113)
From the tetrad on v we define a dual tetrad (62, el‘j) by the relations

eg = —uy,, ey = 5“bgu,,ez; (114)

this is also FW transported on 7. The tetrad and its dual give rise to the completeness relations

g = —utu¥ + §%etel, Juv = —egeg + dap eZefi. (115)

3.2.3 Fermi normal coordinates

To construct the Fermi normal coordinates (FNC) of a point 2 in the normal convex neighbourhood
of v, we locate the unique spacelike geodesic 3 that passes through x and intersects v orthogonally.
We denote the intersection point by T = z(t), with ¢ denoting the value of the proper-time param-
eter at this point. To tensors at Z we assign indices @, 3, and so on. The FNC of z are defined by

0=t 2% = —e2(2)o(z,7), oa(z, Z)u*(z) = 0; (116)

the last statement determines Z from the requirement that —o®, the vector tangent to 3 at Z, be
orthogonal to u®, the vector tangent to . From the definition of the FNC and the completeness
relations of Equation (115) it follows that

2

s2 = §p2%ab

=20(z, ), (117)
so that s is the spatial distance between Z and x along the geodesic 8. This statement gives an
immediate meaning to £%, the spatial Fermi normal coordinates; and the time coordinate £ is
simply proper time at the intersection point z. The situation is illustrated in Figure 6.
Suppose that x is moved to x + dx. This typically induces a change in the spacelike geodesic
B, which moves to 8+ §0, and a corresponding change in the intersection point Z, which moves
to 2’ = 7 + 0z, with §2® = u%dt. The FNC of the new point are then #%(z + dx) = t + §t
and 2%(z + 6x) = —e%, (¢")o® (z + dx,2"), with 2 determined by oo (2 + 6z, 2" )u® (z") = 0.
Expanding these relations to first order in the displacements, and simplifying using Equations (113),
yields
dt = pogpu® dz?, di® = —ed (O’aﬁ + uoo_‘guﬁa@—yu;’> dzP, (118)

where 1 is determined by pu=! = —(Uagu&ug + 0za%).

3.2.4 Coordinate displacements near ~y

The relations of Equation (118) can be expressed as expansions in powers of s, the spatial distance

from Z to x. For this we use the expansions of Equations (88) and (89), in which we substitute
0% = —e22% and g%, = u®e + e2e%, where (€2,62) is a dual tetrad at x obtained by parallel

a "o
transport of (—ug,eZ) on the spacelike geodesic 5. After some algebra we obtain

a
a

1
/1’_1 =1+ aaﬁ?a + gROCOdécid + 0(83)7
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S| S

Y

Figure 6: Fermi normal coordinates of a point x relative to a world line y. The time coordinate t
selects a particular point on the word line, and the disk represents the set of spacelike geodesics that
intersect v orthogonally at z(t). The unit vector w® = &%/s selects a particular geodesic among
this set, and the spatial distance s selects a particular point on this geodesic.

where a,(t) = aged are frame components of the acceleration vector, and Roeoq(t) = Rcwgguaejug eg
are frame components of the Riemann tensor evaluated on «y. This last result is easily inverted to
give
a a2 1L end 3
w=1-—0a,2%+ (a,2*)" — gROCOde' 4+ O(s”).

Proceeding similarly for the other relations of Equation (118), we obtain

dt = [1 — 003 + (a0d?)? — LRocoaiad + (9(53)} (égdxﬁ) + [~ Roepai®d? + O(s%)] (égdxﬁ)
(119)

and
1 1
dz® = [2R“cod§:“§:d + 0(33)} (egda”) + {5“,) + éRacbdﬁ;%d + 0(53)] (epda?), (120)

where Rgc04(t) = Rdﬁggefejuféeg and Repa(t) = R&,W;geerefeg are additional frame components
of the Riemann tensor evaluated on 7. (Note that frame indices are raised with §2°.)
As a special case of Equations (119) and (120) we find that

o
Oz~

oz®

Oz«

; (121)

[oIRs]

= —Uqa,

v

=€
Y

because in the limit # — Z the dual tetrad (€,e2) at x coincides with the dual tetrad (—ug,e%)

at . It follows that on +, the transformation matrix between the original coordinates = and the
FNC (t,2%) is formed by the Fermi-Walker transported tetrad:

0"
at |,

«
& Ox
- u ) A~
oze

=el. (122)
gl
This implies that the frame components of the acceleration vector a,(t) are also the components of
the acceleration vector in the FNC; orthogonality between u® and a® means that ag = 0. Similarly,

Rocoa(t), Roeva(t), and Raepa(t) are the components of the Riemann tensor (evaluated on +) in the
Fermi normal coordinates.
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3.2.5 Metric near ~
Inversion of Equations (119) and (120) gives

1 1 ,
eddr® = [1 + a2 + §R060dgecgzd + 0(33)] dt + {GROdefc‘id + (9(33)] di® (123)

and
1 1
égdxa = |:6ab — gRacbdli:CCEd + 0(33):| di‘b + |:_2Rac0di'c.'id + 0(53):| dt (124)
These relations, when specialized to the FNC, give the components of the dual tetrad at . They
can also be used to compute the metric at =, after invoking the completeness relations g.5 =

—enel + Sapesel. This gives

ds? = gy dt* + 2g1q dtdi® + gap d2*d2?,

with
gt = — 1 =+ 2(1,1:%” + (aai'a)z + Rocodici'd =+ 0(53) s (125)
2
Gta = _gROCad@%d +0(s%), (126)
1 ~cand 3
Gab = dap — gRacbd-T o+ O<S ) (127)

This is the metric near « in the Fermi normal coordinates. Recall that a,(t) are the components
of the acceleration vector of v — the timelike curve described by £ = 0 — while Roc04(t), Rocba(t),
and Rgcpd(t) are the components of the Riemann tensor evaluated on 7.

Notice that on v, the metric of Equations (125, 126, 127) reduces to g = —1 and gap = dap-
On the other hand, the nonvanishing Christoffel symbols (on ~) are I'*,, = 'Y, = a,; these are
zero (and the FNC enforce local flatness on the entire curve) when v is a geodesic.

3.2.6 Thorne—Hartle coordinates
The form of the metric can be simplified if the Ricci tensor vanishes on the world line:
R, (2) =0. (128)

In such circumstances, a transformation from the Fermi normal coordinates (¢, %) to the Thorne—
Hartle coordinates (t,§*) brings the metric to the form

g = = [1+ 203" + (25")° + Rocoai*§" + O(s°) (129)
2 .

Gta = _gROcady yd + 0(33)7 (130)

gab = dap (1 — Rocoad“9?) + O(s*). (131)

We see that the transformation leaves g4 and gy, unchanged, but that it diagonalizes g,5. This met-
ric was first displayed in [58] and the coordinate transformation was later produced by Zhang [64].

The key to the simplification comes from Equation (128), which dramatically reduces the num-
ber of independent components of the Riemann tensor. In particular, Equation (128) implies that
the frame components R,.,q of the Riemann tensor are completely determined by E.5 = Roaos,
which in this special case is a symmetric-tracefree tensor. To prove this we invoke the completeness
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relations of Equation (115) and take frame components of Equation (128). This produces the three
independent equations

5CdRacbd = gabv 5CdR0cad = 07 5Cdgcd =0,

the last of which states that &£,;, has a vanishing trace. Taking the trace of the first equation gives
5§ R ,pa = 0, and this implies that Rgcpq has five independent components. Since this is also the
number of independent components of £,;, we see that the first equation can be inverted — R,cpq can
be expressed in terms of £,,. A complete listing of the relevant relations is Ri212 = £11+&22 = —&33,
Ri213 = Ea3, Ri223 = —&13, Riz13 = E11+E33 = —Ea2, Ri323 = E12, and Razaz = Eaa +E33 = —&11.
These are summarized by

Racbd - 6abgcd + 6cdgab - 6adgbc - 6bcgad7 (132)

and Eup = Roaop Satisfies §7°E,;, = 0.

We may also note that the relation 0% Roeqa = 0, together with the usual symmetries of the
Riemann tensor, imply that Ry..q too possesses five independent components. These may thus
be related to another symmetric-tracefree tensor B,,. We take the independent components to
be Ro112 = —Bis, Roiiz = Bi2, Roies = —Bi1, Ro212 = —Bas, and Rogi3 = B, and it is
easy to see that all other components can be expressed in terms of these. For example, Rgoo3 =
—Ro113 = —Bi2, Roz12 = —Ro123 + Ro213 = Bi1 + Baa = —Bsz, Roz13 = —Ro212 = Bas, and
Ro323 = Ro112 = —Bi3. These relations are summarized by

ROabc = _5bchdaa (133)

where €44, is the three-dimensional permutation symbol. The inverse relation is BY = %5“CdR0bcd.
Substitution of Equation (132) into Equation (127) gives

1 1 1 1
Gab = Oab <1 - Sgcdge%d) — 5 (88 €u + gRaErcd” + S rEacd” + O(s”),

and we have not yet achieved the simple form of Equation (131). The missing step is the transfor-
mation from the FNC z® to the Thorne-Hartle coordinates §®. This is given by

1 . 1
gr=at 4t 0= g (32 Eapi® + g:i"aé'bcicb:%c +0O(sY). (134)

It is easy to see that this transformation affects neither gy nor gy, at orders s and s2. The remaining
components of the metric, however, transform according to gus(THC) = ¢4 (FNC) — &a:p — Ebias
where
1 ~scad [ ~c 1 ~CA, 2, ~c 3
fa;b = g(sabgcdx r — 6 (.Z‘C(E )gab - ggacx Ty + gxagbcx + O(S )

It follows that gTHC = 044(1 — Eaf®?) + O(§3), which is just the same statement as in Equa-
tion (131).

Alternative expressions for the components of the Thorne-Hartle metric are

gt = — [1 + 2aaga + (aaga)2 + 5abgayb + 0(33)} ) (135)
2 o

Gta = _ggachbd:‘/ g%+ 0(s%), (136)

Gab = Sap (1 — Ecai®y?) + O(s%). (137)
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3.3 Retarded coordinates
3.3.1 Geometrical elements

We introduce the same geometrical elements as in Section 3.2: We have a timelike curve v described
by relations z#(7), its normalized tangent vector u* = dz*/dr, and its acceleration vector a* =
Dut/dr. We also have an orthonormal triad e# that is transported on the world line according to

Det
dr

= agut +wel, (138)
where a,(7) = a,e” are the frame components of the acceleration vector and wap(7) = —wpq (7) is a
prescribed rotation tensor. Here the triad is not Fermi—Walker transported: For added generality
we allow the spatial vectors to rotate as they are transported on the world line. While wg, will be
set to zero in most sections of this paper, the freedom to perform such a rotation can be useful
and will be exploited in Section 5.4. It is easy to check that Equation (138) is compatible with
the requirement that the tetrad (u*,e”) be orthonormal everywhere on «y. Finally, we have a
dual tetrad (62,6“)7 with eg = —u, and e, = (5“bg,weg. The tetrad and its dual give rise to the

n
completeness relations

g = —utu¥ + 6%etel, Juv = —ege?, + Oab eﬁef,, (139)
which are the same as in Equation (115).

The Fermi normal coordinates of Section 3.2 were constructed on the basis of a spacelike
geodesic connecting a field point x to the world line. The retarded coordinates are based instead
on a null geodesic going from the world line to the field point. We thus let  be within the normal
convex neighbourhood of v, 8 be the unique future-directed null geodesic that goes from the world
line to x, and 2’ = z(u) be the point at which § intersects the world line, with u denoting the
value of the proper-time parameter at this point.

From the tetrad at '’ we obtain another tetrad (ef,e%) at x by parallel transport on 3. By
raising the frame index and lowering the vectorial index we also obtain a dual tetrad at 2: €0 =
—gageg and el = 5“bgagef. The metric at x can be then be expressed as

Jop = —ege% + 5(11,636%, (140)

and the parallel propagator from z’ to x is given by

/

9% (2,2)) = —€e§ua +elel, gl x) = u'ed + el el (141)

3.3.2 Definition of the retarded coordinates

The quasi-Cartesian version of the retarded coordinates are defined by

’

¥ = u, 2= —e (2")o® (z,2'), o(z,2') =0; (142)

the last statement indicates that ' and z are linked by a null geodesic. From the fact that o is
a null vector we obtain

r= (6abi:aa§b)1/2 = ua/a”‘/, (143)
and r is a positive quantity by virtue of the fact that 3 is a future-directed null geodesic — this
makes ¢ past-directed. In flat spacetime, o = —(x — 2/)*, and in a Lorentz frame that is
momentarily comoving with the world line, » = ¢ — ¢ > 0; with the speed of light set equal
to unity, r is also the spatial distance between x’ and z as measured in this frame. In curved
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spacetime, the quantity r = Uoo® can still be called the retarded distance between the point x
and the world line. Another consequence of Equation (142) is that

o = —r (uo‘/ + Q“eg/> , (144)

where Q% = 2% /r is a spatial vector that satisfies 55000l = 1.
A straightforward calculation reveals that under a displacement of the point x, the retarded
coordinates change according to

du = —kq dz®, dz® = — (raa — w4 eglaa[;,uﬁ/) du — e‘é,a”‘[; dzP, (145)

where k., = 0,/7 is a future-directed null vector at = that is tangent to the geodesic 3. To obtain
these results we must keep in mind that a displacement of x typically induces a simultaneous
displacement of 2’ because the new points z + dz and z’ + dz’ must also be linked by a null
geodesic. We therefore have 0 = o (z + 0z, 2’ 4 62') = 04 02% + 04 02, and the first relation
of El)quatioln (145) follows from the fact that a displacement along the world line is described by
ox® =u® du.

3.3.3 The scalar field r(z) and the vector field k*(x)

If we keep 2’ linked to = by the relation o(z,2’) = 0, then the quantity

’

r(z) = oo (z, 2" )u (z') (146)

can be viewed as an ordinary scalar field defined in a neighbourhood of 7. We can compute
the gradient of r by finding how r changes under a displacement of x (which again induces a
displacement of z). The result is

Bor = = (0™’ + Gargu®u” ) iy + Gargu (147)

Similarly, we can view

(148)

as an ordinary vector field, which is tangent to the congruence of null geodesics that emanate from
x'. Tt is easy to check that this vector satisfies the identities
Ou

Oapk’ = ka, Okl = - (149)

from which we also obtain o4/ gu",kﬁ = 1. From this last result and Equation (147) we deduce the
important relation

k9ur = 1. (150)

In addition, combining the general statement oc® = —g“‘a/aa/ (cf. Equation (79)) with Equa-
tion (144) gives

k= g, (ua' + Q“eg') : (151)

’
(e

* on (. From this and

the vector at = is therefore obtained by parallel transport of u® + Qe
Equation (141) we get the alternative expression

k= e + Qe (152)
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which confirms that k¢ is a future-directed null vector field (recall that Q¢ = 2% /r is a unit vector).

The covariant derivative of k, can be computed by finding how the vector changes under a
displacement of z. (It is in fact easier to first calculate how rk, changes, and then substitute our
previous expression for dgr.) The result is

Phasp = T — ka0 = gty + (00 + oaguu” ) kaks. (153)

From this we infer that £ satisfies the geodesic equation in affine-parameter form, £ Bkﬁ =0, and
Equation (150) informs us that the affine parameter is in fact r. A displacement along a member
of the congruence is therefore given by dax® = k%dr. Specializing to retarded coordinates, and
using Equations (145) and (149), we find that this statement becomes du = 0 and dz® = (£%/r) dr,
which integrate to u = const. and £® = rQ®, respectively, with Q® still denoting a constant unit
vector. We have found that the congruence of null geodesics emanating from z’ is described by

u = const., = rQa(64) (154)
in the retarded coordinates. Here, the two angles 84 (A = 1,2) serve to parameterize the unit

vector 2%, which is independent of r.
Equation (153) also implies that the expansion of the congruence is given by

0=k, =202 (155)

Using the expansion for ¢®, given by Equation (91), we find that this becomes r = 2—%Ra/graa/aﬁ,+
O(r3), or

1
ro =2 — 572 (Roo + 2R0aQ" + RypQ°Q°) + O(r?) (156)

after using Equation (144). Here, Ry = Rafﬂzua/uﬁl, Rog = Ra,@/ua’eg’, and Ry = Rargleg/ef/
are the frame components of the Ricci tensor evaluated at z’. This result confirms that the
congruence is singular at r = 0, because 6 diverges as 2/r in this limit; the caustic coincides with
the point z’.

Finally, we infer from Equation (153) that k% is hypersurface orthogonal. This, together with
the property that k satisfies the geodesic equation in affine-parameter form, implies that there
exists a scalar field u(z) such that

ko = —0qu. (157)

This scalar field was already identified in Equation (145): It is numerically equal to the proper-
time parameter of the world line at z’. We conclude that the geodesics to which k® is tangent
are the generators of the null cone u = const. As Equation (154) indicates, a specific generator is
selected by choosing a direction Q¢ (which can be parameterized by two angles %), and r is an
affine parameter on each generator. The geometrical meaning of the retarded coordinates is now
completely clear; it is illustrated in Figure 7.

3.3.4 Frame components of tensor fields on the world line

The metric at = in the retarded coordinates will be expressed in terms of frame components of
vectors and tensors evaluated on the world line 7. For example, if a® is the acceleration vector at
7/, then as we have seen,

/

aq(u) = aqr €5 (158)

are the frame components of the acceleration at proper time wu.
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Figure 7: Retarded coordinates of a point x relative to a world line 7. The retarded time u selects
a particular null cone, the unit vector Q% = 3%/r selects a particular generator of this null cone,
and the retarded distance r selects a particular point on this generator. This figure is identical to
Figure 4.

Similarly,

Rao00(u) = Raryrprs e u’ ef/u‘s/,

Raova(w) = Rarygrs e uY el ) (159)
Racva(u) = Rarvyrprsr eg"ezleb,eg/

are the frame components of the Riemann tensor evaluated on 7. From these we form the useful
combinations

Sab(ua HA) = RaObO + RaObCQC + RbOacQC + RacbdQCQd = Sba7 (160)
Sa(u,0%) = SupQ® = Raop09” — Rapoc "0, (161)
S(u,04) = S,Q% = Ra050Q°Q°, (162)

in which the quantities Q% = #%/r depend on the angles 4 only — they are independent of u and
T

We have previously introduced the frame components of the Ricci tensor in Equation (156).
The identity

Roo + 2R0a Q% + RapQQP = 605, — S (163)

follows easily from Equations (160, 161, 162) and the definition of the Ricci tensor.

In Section 3.2 we saw that the frame components of a given tensor were also the components of
this tensor (evaluated on the world line) in the Fermi normal coordinates. We should not expect
this property to be true also in the case of the retarded coordinates: the frame components of a
tensor are mot to be identified with the components of this tensor in the retarded coordinates. The
reason is that the retarded coordinates are in fact singular on the world line. As we shall see,
they give rise to a metric that possesses a directional ambiguity at 7 = 0. (This can easily be seen
in Minkowski spacetime by performing the coordinate transformation u = t — /22 + y2 + 22.)
Components of tensors are therefore not defined on the world line, although they are perfectly well
defined for r # 0. Frame components, on the other hand, are well defined both off and on the
world line, and working with them will eliminate any difficulty associated with the singular nature
of the retarded coordinates.
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3.3.5 Coordinate displacements near ~

The changes in the quasi-Cartesian retarded coordinates under a displacement of = are given by
Equation (145). In these we substitute the standard expansions for o,/ g and o3, as given by
Equations (88) and (89), as well as Equations (144) and (151). After a straightforward (but fairly
lengthy) calculation, we obtain the following expressions for the coordinate displacements:

du = (€2 dz®) — Q, (el dz*), (164)

dit = - [m“ — T + %rzsa + 0(7’3)} (€5, da)
a a a Oc 1 2 qa 1 2 qa 3 b a
+ [0% + | ra® — rw®.Q —|—§7“S Qb—|—67'5b—|—(9(r) (er, dz®) . (165)

Notice that the result for du is exact, but that dz® is expressed as an expansion in powers of 7.
These results can also be expressed in the form of gradients of the retarded coordinates:

Dot = €% — Quel, (166)

1
Dot = — {ma — 1w 4 r?St + O(r?’)} e
a a a Oc 1 2 qa 1 2 qa 3 b
+ 0% + [ ra® — rw®.Q2 +§’I”S Qb+6TSb+O(T) €op- (167)

Notice that Equation (166) follows immediately from Equations (152) and (157). From Equa-
tion (167) and the identity 0,7 = Q,0,2* we also infer

1 1 1
Opr = — {maQ“ + 51"25 + (9(7"3)} el + Kl + rap + 3r25> Qq + 67"25& + (9(7’3)] e, (168)
where we have used the facts that S, = S,,Q° and S = S,Q%; these last results were derived in
Equations (161) and (162). It may be checked that Equation (168) agrees with Equation (147).
3.3.6 Metric near ~
Tt is straightforward (but fairly tedious) to invert the relations of Equations (164) and (165) and
solve for €2 dz® and e dz®. The results are
1 1 1
el da® = [1 + ra " + 57“28’ + O(r‘?)} du + [(1 + 6r25> Q, — 67«25@ + O(TS)] dz®, (169)
a « a a b 1 2 qa 3 a 1 2 qa 1 2 qa 3 ~b
et dz® = |r(a —wa)+§r ST+ 0(r?)| du+ 5b—6r Sb—i—ér S+ O(r?)| dz°. (170)

These relations, when specialized to the retarded coordinates, give us the components of the
dual tetrad (e2,e%) at x. The metric is then computed by using the completeness relations of

[e2 o)

Equation (140). We find
ds® = guu du? + 2guq dudi® + gap d2di®,

with
Juuw = — (1 + raaQa)Q + 72 (aa — wabe) (a® —w®Q°) — r2S + O(r?), (171)
Jua = — <1 + rapQ’ + §r25> Qa + 7 (aq — wabe) + %7‘25@ +0(r?), (172)
o = Bup — (1 + ;ﬂs) QO — %ﬁsab + éﬂ (Sa + 2uSy) + O(). (173)
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We see (as was pointed out in Section 3.3.4) that the metric possesses a directional ambiguity
on the world line: The metric at » = 0 still depends on the vector Q* = &*/r that specifies the
direction to the point x. The retarded coordinates are therefore singular on the world line, and
tensor components cannot be defined on +.

By setting Sqp = S, = S = 0 in Equations (171, 172, 173) we obtain the metric of flat spacetime
in the retarded coordinates. This we express as

Nuu = — (1 + raaQa)2 + 72 (aa - wabe) (aa - wacQC) ’
Nua = — (]. + Tabﬂb) Qa +r (aa - wabe) ) (174)
Nab = 5ab - QaQb-

In spite of the directional ambiguity, the metric of flat spacetime has a unit determinant everywhere,
and it is easily inverted:

n“t =0, Nt = —0°, 7% = 5% 4 r(a® — w0 + Qe (ab — waQC) . (175)

The inverse metric also is ambiguous on the world line.

To invert the curved-spacetime metric of Equations (171, 172, 173) we express it as gog =
Nap + hap + O(r®) and treat h,s = O(r?) as a perturbation. The inverse metric is then g*° =
N =127 has + O(®), or

9" =0, (176)
g = -, (177)

1 1
g% = 0" 7 (a" —w Q) Q"+ 70" (a — W Q7) + 328 4 2r® (S0 + Q°SY) + O(r). (178)

The results for g“* and g“¢ are exact, and they follow from the general relations g*? (9, u)(9su) = 0
and g*#(0,u)(9sr) = —1 that are derived from Equations (150) and (157).
The metric determinant is computed from /—g =1+ %77“’3 hag + O(r?), which gives

1 1
V_g=1- 67"2 (69°Sep — ) + O(r®) =1 — 67"2 (Roo + 2R0aQ" + Rep Q%) + O(r®),  (179)

where we have substituted the identity of Equation (163). Comparison with Equation (156) then
gives us the interesting relation /—g = %T@ + O(r?), where 6 is the expansion of the generators of
the null cones u = const.

3.3.7 Transformation to angular coordinates

Because the vector Q% = &% /r satisfies 6,,Q2%Q% = 1, it can be parameterized by two angles §4. A
canonical choice for the parameterization is 2* = (sin 6 cos ¢, sin 6 sin ¢, cos #). It is then convenient
to perform a coordinate transformation from & to (r,#4), using the relations #* = rQ2(64).
(Recall from Section 3.3.3 that the angles 64 are constant on the generators of the null cones
u = const., and that r is an affine parameter on these generators. The relations £ = rQ)® therefore
describe the behaviour of the generators.) The differential form of the coordinate transformation
is

di® = Q% dr 4+ rQ¢% do*, (180)

where the transformation matrix 500
Q%4 = 181
A 89‘4 ( )

satisfies the identity 2,029 = 0.
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We introduce the quantities
Qap = 00405, (182)
which act as a (nonphysical) metric in the subspace spanned by the angular coordinates. In the
canonical parameterization, Q45 = diag(1,sin® ). We use the inverse of Q45, denoted Q45 to
raise upper-case latin indices. We then define the new object

Q4 = 6,0420% (183)
which satisfies the identities
Q408 =54, @O = 5% — QoQ,. (184)

The second result follows from the fact that both sides are simultaneously symmetric in a and b,
orthogonal to ©, and Q°, and have the same trace.

From the preceding results we establish that the transformation from &® to (r,#4) is accom-
plished by

oz® oz®

=Q° — =10 1
or ) 89‘4 Til4, ( 85)
while the transformation from (r,#4) to £ is accomplished by
or 204 1
=0 =-04 186
oza “ oze  r ¢ (186)

With these transformation rules it is easy to show that in the angular coordinates, the metric takes
the form of
ds® = guu du® + 2y, dudr + 2g, 4 dudf? + JAB dHAdOB,

with
Guw = — (1 + 70,99 + 72 (a4 — wap ) (a® — w2 Q°) — 128 + O(r%), (187)
Gur = —1, (188)
2
Gua =T [r (aa - wabe) + gTQSa + O(r?’)] % (189)
1
gap =17 |:QAB - gTQSaanAQbB + O(TB)} : (190)
The results g, = —1, g = 0, and g4 = 0 are exact, and they follow from the fact that in the
retarded coordinates, k., dz® = —du and k%0, = 0,.
The nonvanishing components of the inverse metric are
gur = _17 (191)
g7 =1+42ra,0% + 128 + O(r?), (192)
1 2
g = . [r (a® —wQP) + 57’25“ + (’)(r?’)] Q2 (193)
1 1
9"’ = {QAB + 3r780T0] + (9(7”3)} : (194)
The results g** = 0, g*" = —1, and g"4 = 0 are exact, and they follow from the same reasoning
as before.

Finally, we note that in the angular coordinates, the metric determinant is given by
1
V=g =1rVQ [1 - 67”2 (Roo + 2R0a Q" + RapQ°Q%) + O(r3)] , (195)

where Q is the determinant of Q45; in the canonical parameterization, v/ = sin 6.
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3.3.8 Specialization to a* = 0= R,

In this section we specialize our previous results to a situation where ~ is a geodesic on which the
Ricci tensor vanishes. We therefore set a = 0 = R,,,, everywhere on v, and for simplicity we also
set wgp to zero.

We have seen in Section 3.2.6 that when the Ricci tensor vanishes on +, all frame components of
the Riemann tensor can be expressed in terms of the symmetric-tracefree tensors €, (u) and By (u).
The relations are RaObO = Eab, Raobc = Ebchda, and Racbd = 5ab5cd + 5cd5ab — 5ad€bc — 5{,6&"[.
These can be substituted into Equations (160, 161, 162) to give

Sap(t, 04) = 2E0p — QaEpe° — VpEae2E + FupEpe N + £,dQ°BY + £0.4Q°BL,  (196)
Sa(u, 04) = EQ° + £44.0° 8,04, (197)
S(u,01) = £,,0°0Q°. (198)

In these expressions the dependence on retarded time w is contained in &£, and B,p, while the
angular dependence is encoded in the unit vector 2¢.
It is convenient to introduce the irreducible quantities

E* = EpQ"Q°, (199)
Er = (8,0 — 0,0 &,.9°, (200)
Efy = 2Eap — 200EpeQ° — 20,0 + (Fap, + Qa)EX, (201)
B = £ 0°B°,Q%, (202)
By = €acdQ°BL (6% — Q) + epea2°BYL (6, — Q°Q,) . (203)

These are all orthogonal to Q% £:Q® = B:Q® = 0 and £5,Q° = B0 = 0. In terms of these
Equations (196, 197, 198) become

Sup = 5+ Qb + EXQp + QuE* + By + QuBl + By, (204)
Sy = EF + Q.E* + B, (205)
S =" (206)

When Equations (204, 205, 206) are substituted into the metric tensor of Equations (171, 172,
173) — in which a, and w,p are both set equal to zero — we obtain the compact expressions

Guu = —1 — 12" + O(r?), (207)
2 )
Jua = —Qa + grz &+ 8B+ (9(7"3), (208)
1
Gab = Oap — QLaly — 57’2 (Ex, + Biy) + 0. (209)
The metric becomes
Guu = -1 7128* + O(T3)7 (210)
Gur = 713 (211)
2
gua = 51 (€3 +B3) +O(rY), (212)
1
9ap =r*Qap — 5 (E4p + Bip) + O() (213)
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after transforming to angular coordinates using the rules of Equation (185). Here we have intro-
duced the projections

EL=E1QY = E,0400, (214)

Eip = EQ4Q%L = 26,049 + £ Qap, (215)

B = BiQY = eaneN400B,0%, (216)

Bip = B Q405 = 26,040 B4, Q. (217)

It may be noted that the inverse relations are £ = €304, B = B4Q4, £ = £450208 ) and
B, = B z020F8 ) where Q2 was introduced in Equation (183).

3.4 Transformation between Fermi and retarded coordinates; advanced
point

A point z in the normal convex neighbourhood of a world line v can be assigned a set of Fermi
normal coordinates (as in Section 3.2), or it can be assigned a set of retarded coordinates (see
Section 3.3). These coordinate systems can obviously be related to one another, and our first
task in this section (which will occupy us in Sections 3.4.1, 3.4.2; and 3.4.3) will be to derive the
transformation rules. We begin by refining our notation so as to eliminate any danger of ambiguity.

x=2z(v)
X =z(t)
X
x’ = z(u)

Y

Figure 8: The retarded, simultaneous, and advanced points on a world line v. The retarded point
x' = z(u) is linked to x by a future-directed null geodesic. The simultaneous point T = z(t) is linked
to x by a spacelike geodesic that intersects v orthogonally. The advanced point " = z(v) is linked
to x by a past-directed null geodesic.

The Fermi normal coordinates of x refer to a point & = z(¢) on ~ that is related to = by
a spacelike geodesic that intersects v orthogonally (see Figure 8). We refer to this point as z’s
simultaneous point, and to tensors at Z we assign indices @, 3, etc. We let (¢, sw®) be the Fermi
normal coordinates of , with ¢ denoting the value of 4’s proper-time parameter at z, s = /20 (z, Z)
representing the proper distance from Z to = along the spacelike geodesic, and w® denoting a unit
vector (dgpw?w® = 1) that determines the direction of the geodesic. The Fermi normal coordinates
are defined by sw® = —eZc® and o5u® = 0. Finally, we denote by (g, &%) the tetrad at x that is
obtained by parallel transport of (u%,e%) on the spacelike geodesic.

The retarded coordinates of z refer to a point 2’ = z(u) on ~ that is linked to = by a future-
directed null geodesic (see Figure 8). We refer to this point as z’s retarded point, and to tensors at
2’ we assign indices o/, ', etc. We let (u, rQ%) be the retarded coordinates of z, with u denoting the
value of 7’s proper-time parameter at o/, r = ooru® representing the affine-parameter distance from
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2’ to z along the null geodesic, and ¢ denoting a unit vector (§,,929Q° = 1) that determines the
direction of the geodesic. The retarded coordinates are defined by rQ® = —eg,ao‘, and o(z,z’) = 0.
Finally, we denote by (eJ,e2) the tetrad at x that is obtained by parallel transport of (u"‘/7 eg/)
on the null geodesic.

The reader not interested in following the details of this discussion can be informed that

e our results concerning the transformation from the retarded coordinates (u,r,Q%) to the
Fermi normal coordinates (¢, s,w®) are contained in Equations (218, 219, 220) below;

e our results concerning the transformation from the Fermi normal coordinates (t, s,w®) to the
retarded coordinates (u,r, 2*) are contained in Equations (221, 222, 223);

e the decomposition of each member of (€5,e%) in the tetrad (ef,el) is given in retarded

coordinates by Equations (224) and (225); and

o the decomposition of each member of (ef, e) in the tetrad (g, eS) is given in Fermi normal

coordinates by Equations (226) and (227).

Our final task will be to define, along with the retarded and simultaneous points, an advanced
point " on the world line v (see Figure 8). This is taken on in Section 3.4.4. Throughout this
section we shall set wg, = 0, where wg;, is the rotation tensor defined by Equation (138) — the
tetrad vectors e# will be assumed to be Fermi—Walker transported on +.

3.4.1 From retarded to Fermi coordinates

Quantities at T = z(t) can be related to quantities at 2’ = z(u) by Taylor expansion along the
world line 4. To implement this strategy we must first find an expression for A =t —u. (Although
we use the same notation, this should not be confused with the van Vleck determinant introduced
in Section 2.5.)

Consider the function p(7) of the proper-time parameter 7 defined by

p(1) = oy (x,2(7)) u(7),

in which z is kept fixed and in which z(7) is an arbitrary point on the world line. We have that
p(u) = r and p(t) = 0, and A can ultimately be obtained by expressing p(t) as p(u + A) and
expanding in powers of A. Formally,

p(t) = plu) + (0D + Z5u)A” + Sp ()A® + O(AY),

where overdots (or a number within brackets) indicate repeated differentiation with respect to 7.
We have

p(u) = Uo/ﬁ’ua/uﬁ/ + Uoz’aa/a

pu) = Ua/gu,/uo‘luﬁ,u”/ + 30a/5/u°‘la5/ + aa,aa',
p(?’) (u) = aa,ﬁw/gmo‘/uBIUV/u‘s/ +owpy (5a“/u5/1ﬂ/ + uo‘/uﬂ/cﬂ/) +oap (Saa/aﬁ/ + 4uo‘ldﬁ/) + aa/d“/7
where a* = Dut/dr, a* = Da* /dr, and a* = Da* /dr.

We now express all of this in retarded coordinates by invoking the expansion of Equation (88)
for oo (as well as additional expansions for the higher derivatives of the world function, obtained
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by further differentiation of this result) and the relation 6 = —r(u® + Q%) first derived in
Equation (144). With a degree of accuracy sufficient for our purposes we obtain

1
p(u) = — |14+ ra Q% + §r25 +0(r?)

Pplu) = —r (ap + a, Q%) + O(r?),
PP (w) = ao + O(r),

where S = Rq0p0Q%Q° was first introduced in Equation (162), and where ay = da/ual, g = da/egl
are the frame components of the covariant derivative of the acceleration vector. To arrive at these

results we made use of the identity aa/aa' + da/ua' = 0 that follows from the fact that a* is
orthogonal to u*”. Notice that there is no distinction between the two possible interpretations
aq = dag/dr and a, = aye! for the quantity a,(7); their equality follows at once from the

substitution of De# /dr = a,u* (which states that the basis vectors are Fermi—Walker transported
on the world line) into the identity da,/dT = D(a,€e%)/dr.
Collecting our results we obtain

1 1 1
r= [1 + 70,02 + §r2S + 03| A+ 5" [a0 4 @, Q% + O(r)] A? — 5 [ao + O(r)] A% + O(AY),

which can readily be solved for A = t — u expressed as an expansion in powers of r. The final
result is

t=u+r {1 raq (1) + 12 [ag (1)) — ér%o( ) — %rQaa(u)Q“f %ﬁRaobo(u)Q“Qb + (9(7"3)},
(218)

where we show explicitly that all frame components are evaluated at the retarded point z(u).
To obtain relations between the spatial coordinates we consider the functions

Pa(T) = =0 (, 2(7)) €fi(7),
in which z is fixed and z(7) is an arbitrary point on y. We have that the retarded coordinates are
given by Q2% = p®(u), while the Fermi coordinates are given instead by sw® = p*(¢t) = p®*(u + A).
This last expression can be expanded in powers of A, producing

1 1
" = () 4 5 (WA + L WA + 2p O (A + O(aY),
with
Paw) = —0wpes u” — (gau’) (ageld)
1
= —ra, — 57“25@ +0(r%),
p_ (u) - 5 o ﬁ, 71_(2 o ﬂ/ a/) ( ’Y,)_ o’ ,8’_( a’) ( ,3/)
o Wiy e U u oo pu™ u” +o4a ayey Ou'prey @ Ool agrel,
1
=(1+ rabe) ag — T0g + grRa()onb +0O(r?),
P (1) = —oapysed v u ul
- (300/&7/“0/“,6’“«/ + 6aa/g/u°"a'6/ + O'O/C'La/ + Uo/uo‘/dg/uﬁ/) <a6’62/>
— Oy €y (2a '+ u a7,> — (3oa/5/u°‘/u5/ + 20a,a0‘/) (dyez,) — aa,ﬂ/eg,dﬁl

(o) (50
).

= 2a, + O(r
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To arrive at these results we have used the same expansions as before and re-introduced S, =
Raop02? — Rap0c02°0Q°, as it was first defined in Equation (161).
Collecting our results we obtain

swt =71rQ% —r {aa + %TS“ + O(r2)] A+ % [(1 + rabﬂb) a® —ra® + %rR“ObOQb + (9(7"2)] A?
1
+3 6"+ 0] A%+ O(A"),

which becomes

swt =r {Qa;r [1—ray(u)Q’] a®(u) — %7’2&“@) - %TQRQObO(u)QbJr éTQRabOC(u)QbQCJr (9(7"3)}

(219)

after substituting Equation (218) for A = ¢ — u. From squaring Equation (219) and using the
identity Sapw®w? =1 we can also deduce

s=r {1 - %raa(u)ﬂa + §r2 [aq (u)Q%)? — 17"2c'10(u) - 17“2c'z(l(u)Q“ -

1
< < 5 ~72 Raopo (1) Q000 + 0(7«3)}

6
(220)

for the spatial distance between z and z(t).

3.4.2 From Fermi to retarded coordinates

The techniques developed in the preceding Section 3.4.2 can easily be adapted to the task of
relating the retarded coordinates of x to its Fermi normal coordinates. Here we use Z = z(t) as
the reference point and express all quantities at 2’ = z(u) as Taylor expansions about 7 = ¢.

We begin by considering the function

o(r) = o (2,2(7))

of the proper-time parameter 7 on 7. We have that o(t) = 1s? and o(u) = 0, and A =t — u is
now obtained by expressing o(u) as o(t — A) and expanding in powers of A. Using the fact that
(1) = p(7), we have

o(u) = o(t) = p()A + %p(t)AQ - %p‘(t)A3 + 2—14p<3>(t)A4 +0(A%).

Expressions for the derivatives of p(7) evaluated at 7 =t can be constructed from results derived
previously in Section 3.4.1: it suffices to replace all primed indices by barred indices and then
substitute the relation ¢ = —sw®e? that follows immediately from Equation (116). This gives

1
p(t) = — {1 + saqw® + gszRaobow“wb + (9(53) ,

P(t) = —saw® + (9(82),
PP (t) = ag + O(s),

and then

$2 = |1+ sa.w® + %szRaoww“wb—k 0(33)} A? — %s [aaw® + O(s)] A3 — % [ao + O(s)]A* + O(A)
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after recalling that p(t) = 0. Solving for A as an expansion in powers of s returns

132]?,(101,0 (t)w“wb + 0(53)} ,

1 3 1 1
u=t—s {1 - isaa(t)wa—i- 262 [aa (w4 = s2a0(t) + =52 (t)w®— 5

8 24 6
(221)

in which we emphasize that all frame components are evaluated at the simultaneous point z(t).
An expression for r = p(u) can be obtained by expanding p(t — A) in powers of A. We have

r= —BOA + SHOA? - (DA +O(AY),

and substitution of our previous results gives

{1 + ;saa( tw® — éSQ [aq(t)w?])* — 3° ap(t) — %52(1(1(75)(41“ + és2Ra0b0(t)w“wb + (9(53)}

(222)

for the retarded distance between = and z(u).
Finally, the retarded coordinates r2 = p%(u) can be related to the Fermi coordinates by
expanding p®(t — A) in powers of A, so that

P = p(6) — A + (AT p (A + O(AY).

Results from the preceding Section 3.4.2 can again be imported with mild alterations, and we find

1
Pa(t) = §S2Rabocwbwc + (’)(33),

1
Palt) = (1 + sabwb) aq + gsRQObowb +0(s%),
PP (t) = 2a4(t) + O(s).

This, together with Equation (221), gives

1 1 1
rQ% =s {wa + gsa“(t) - gSQda(t) — gs2R“bOC(t)wwa + fs 2R ()W + (’)(33)} . (223)
It may be checked that squaring this equation and using the identity 64,Q°Q° = 1 returns the
same result as Equation (222).

3.4.3 Transformation of the tetrads at x

Recall that we have constructed two sets of basis vectors at z. The first set is the tetrad (g, €%)
that is obtained by parallel transport of (u®,e%) on the spacelike geodesic that links x to the
simultaneous point Z = z(t). The second set is the tetrad (ef,e%) that is obtained by parallel
transport of (uo‘/,eg‘/) on the null geodesic that links x to the retarded point 2’ = z(u). Since
each tetrad forms a complete set of basis vectors, each member of (€5, e%) can be decomposed in
the tetrad (eJ, e2), and correspondingly, each member of (e§, e%) can be decomposed in the tetrad
(e5,€%). These decompositions are worked out in this Section. For this purpose we shall consider

the functions
(1) = g% (z,2(r)w(1),  pa(1) =g (z,2(7)) e (7),
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in which z is a fixed point in a neighbourhood of «, z(7) is an arbitrary point on the world line, and
g%, (z,2) is the parallel propagator on the unique geodesic that links = to 2. We have ef = p*(t),
g =pg(t), e = p*(u), and ef = pg(u).

We begin with the decomposition of (€5, %) in the tetrad (e, eS) associated with the retarded
point z(u). This decomposition will be expressed in the retarded coordinates as an expansion in
powers of r. As in Section 3.2.1 we express quantities at z(¢) in terms of quantities at z(u) by
expanding in powers of A =t —u. We have

6 = p" () + 57 (WA + 3" (W)A? + O(A%),
with
() = g% gu u? + g% a®
= [a® + %rR“ObOQb + (’)(7“2)} ey,
P (u) = go‘a/;ﬁ/,y,uo‘,uﬁ/uvl + 9% (2a°‘/uﬁl + uo‘,a’gl) +g%a”
= [—ao+ O(r)] ef + [a* + O(r)] ey,

where we have used the expansions of Equation (92) as well as the decompositions of Equa-
tion (141). Collecting these results and substituting Equation (218) for A yields

5 = 1= 5ru) + O] 6 + | (1= @) () + 37200 + 37 Rio(w)2 + O .
(224)
Similarly, we have
5 = py() + B (WA + S (WA + O(A%),
with
P (u) = g% pes u” + (g“a/uo‘/) (aﬁfeaﬁ/)
= [aa + %rRaoz,oQb + O(rz)} eq + [_;TRbaoch + (9(7“2)] ey,

Py (u) = gaa/;ﬁ,vlegluﬁluvl + go‘a,;ﬁl(%o‘/uﬁ,ayegl + eg/aﬁ,> + (go‘a/ao‘,xaﬁ/eé’,) + (gaa/u“l)(dﬁ/e§,>
= [aa + O(r)] €] + [aqa’ + O(r)] ef,

and all this gives

1 1 .
i [51’(1 + §r2ab(u)aa(u) — §T2Rbaoc(u)ﬂ° + O(rs)} ey

+ [7" (1- rabﬂb) aq(u) + %7"261@(11) + %T2Ra0b0(u)ﬂb + (9(7*3)] €g - (225)

We now turn to the decomposition of (ef,ed) in the tetrad (€§, %) associated with the simul-
taneous point z(t). This decomposition will be expressed in the Fermi normal coordinates as an
expansion in powers of s. Here, as in Section 3.2.2, we shall express quantities at z(u) in terms of

quantities at z(t). We begin with

6§ = (1) ~ (A + 5 (A7 + O(aY)
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and we evaluate the derivatives of p®(7) at 7 = t. To accomplish this we rely on our previous
results (replacing primed indices with barred indices), on the expansions of Equation (92), and on
the decomposition of g% (z,z) in the tetrads at  and . This gives

pe(t) = [aa + %sRaobOwb + (9(52)} e,
p*(t) = [—ao + O(s)] e§ + [a® + O(s)] 2,

and we finally obtain

ey = lf%s2ézo(t) + 0(53)} ey + {s (1 ;sabwb> a®(t) + %SQa“(t) - %szR%bo(t)war O(s®)|ex.
(226)
Similarly, we write
5 = p3(0) ~ (DA + S (A7 + O(AY),
in which we substitute
pa(t) = {aa + %sRGObowb + 0(52)} €y + [—;stGOCwC + 0(52)] ey,
Pa (t) = [aa + O(s)] €5 + [aaa” + O(s)] €},
as well as Equation (221) for A =t — u. Our final result is
ey = [5'; + %s2ab(t)aa(t) + %ssza()c(t)wc + 0(53)} &
+ {s <1 - ;sabwb> aq(t) + %szda(t) - %SQRaObo(u)wb +0(s%)| eg. (227)

3.4.4 Advanced point

It will prove convenient to introduce on the world line, along with the retarded and simultaneous
points, an advanced point associated with the field point . The advanced point will be denoted
z" = z(v), with v denoting the value of the proper-time parameter at z’’; to tensors at this point we
assign indices o/, 8", etc. The advanced point is linked to x by a past-directed null geodesic (refer
back to Figure 8), and it can be located by solving o(z,z”) = 0 together with the requirement
that o (z, ") be a future-directed null vector. The affine-parameter distance between z and =’
along the null geodesic is given by

"

Tadv = _Oa”ua ) (228)

and we shall call this the advanced distance between x and the world line. Notice that r,qy is a
positive quantity.

We wish first to find an expression for v in terms of the retarded coordinates of x. For this
purpose we define A' = v — u and re-introduce the function o(7) = o(z, z(7)) first considered in
Section 3.4.2. We have that o(v) = o(u) = 0, and A’ can ultimately be obtained by expressing
o(v) as o(u + A') and expanding in powers of A. Recalling that ¢(7) = p(7), we have

1 1 1
o(v) =o(u) + pu)A + i;b(u)A'2 + 61’7’(u)A’3 + ﬂp(?’) (u) A* + O(AP).
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Using the expressions for the derivatives of p(7) that were first obtained in Section 3.4.1, we write
this as

r= % [1 +ra " + %rQS +O(r)| A+ ér a0 + @a Q" + O(r)] A? — i [0 + O(r)] A® + O(AN*).

Solving for A’ as an expansion in powers of r, we obtain

v=u-+ 27"{1 raq (w)Q+ 12 [aq (1)) — érQ(ZO(u) - %rzda(u)Q“f %rzRaobo(u)Q“quL 0(7"3)},

(229)

in which all frame components are evaluated at the retarded point z(u).
Our next task is to derive an expression for the advanced distance 7,4,. For this purpose we

observe that r,qy = —p(v) = —p(u+ A'), which we can expand in powers of A' = v — u. This gives
1 1
Tadv = —p(u) — p(u) N — Qﬁ(u)ﬂz - 619(3)(U)A'3 +O(AY),

which then becomes
1 1 1
Tadv = =7+ |1 4+ ra Q%+ 57“25 + O(r?’)] A’—|—§r [ap + aa Q%+ O(r)] A’2—6 [ao + O(r)] A3 +O(N?).

After substituting Equation (229) for A’ and witnessing a number of cancellations, we arrive at
the simple expression

2
Pady =T {1 + §r2da(u)9a + 03| (230)

From Equations (166), (167), and (229) we deduce that the gradient of the advanced time v is
given by
dav = [1=2ra, Q% + O(r*)] €2 + [Q — 2ra, + O(r?)] €2, (231)

where the expansion in powers of r was truncated to a sufficient number of terms. Similarly,
Equations (167, 168, 230) imply that the gradient of the advanced distance is given by

4 1 2 1
OaTady = [(1 + rapQ® + g’l‘QéLbe + 3r25> Qq + 57'2&@ + ETQSG +0(r*)| et

1
+ [—raaQ“ - 57“25 + (9(7"3)] e, (232)

where S, and S were first introduced in Equations (161) and (162), respectively. We emphasize
that in Equations (231) and (232), all frame components are evaluated at the retarded point z(u).
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4 Green’s Functions

4.1 Scalar Green’s functions in flat spacetime
4.1.1 Green’s equation for a massive scalar field

To prepare the way for our discussion of Green’s functions in curved spacetime, we consider first
the slightly nontrivial case of a massive scalar field ®(x) in flat spacetime. This field satisfies the
wave equation

(O — k2)®(z) = —4mp(z), (233)

where 0 = 8 0,03 is the wave operator, u(z) a prescribed source, and where the mass parameter
k has a dimension of inverse length. We seek a Green’s function G(z,z’) such that a solution to
Equation (233) can be expressed as

b(z) = /G(w,m’)u(x’)d‘lx', (234)

where the integration is over all of Minkowski spacetime. The relevant wave equation for the
Green’s function is

(O - k)G (2,2') = —4nds(x — 2), (235)

where d4(x — 2') = §(t — t')d(x — 2')d(y — y')d(z — 2') is a four-dimensional Dirac distribution in
flat spacetime. Two types of Green’s functions will be of particular interest: the retarded Green’s
function, a solution to Equation (235) with the property that it vanishes if x is in the past of 2/,
and the advanced Green’s function, which vanishes when z is in the future of z’.

To solve Equation (235) we use Lorentz invariance and the fact that the spacetime is homoge-
neous to argue that the retarded and advanced Green’s functions must be given by expressions of
the form

Gret(z,2") = 0(t —t')g(0), Gaav(z,2") = 0(t' —t)g(0), (236)

where o = $nqs(x — 2')*(x — 2/)? is Synge’s world function in flat spacetime, and where g(o)
is a function to be determined. For the remainder of this section we set 2’ = 0 without loss of
generality.

4.1.2 Integration over the source

The Dirac functional on the right-hand side of Equation (235) is a highly singular quantity, and
we can avoid dealing with it by integrating the equation over a small four-volume V' that contains
2’ = 0. This volume is bounded by a closed hypersurface V. After using Gauss’ theorem on the
first term of Equation (235), we obtain §,,, G'*dE, — k? [, GdV = —4x, where d%, is a surface
element on OV. Assuming that the integral of G over V' goes to zero in the limit V' — 0, we have

lim ¢ GdS, = —4r. (237)
V—0 oV

It should be emphasized that the four-volume V must contain the point z’.
To examine Equation (237) we introduce coordinates (w, x, 8, ¢) defined by

t = wcos, xr = wsinx sinf cos ¢, Yy = wsin x sin @ sin ¢, z = wsin x cos¥,
and we let OV be a surface of constant w. The metric of flat spacetime is given by

ds? = — cos 2y dw? + 2w sin 2y dw dy + w? cos 2y dx? + w? sin? y dQ>
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in the new coordinates, where dQ? = df? + sin® 0 d¢?. Notice that w is a timelike coordinate when
cos2x > 0, and that x is then a spacelike coordinate; the roles are reversed when cos2y <

0. Straightforward computations reveal that in these coordinates o = —%w2 cos2x, v/—g =

w?sin? y sinf, g% = —cos 2y, ¢g¥X = w ' sin2y, ¢¥X = w2 cos 2y, and the only nonvanishing
component of the surface element is d¥,, = w? sin® x d df2, where dQ = sin 6 df dé. To calculate
the gradient of the Green’s function we express it as G = 0(+t)g(c) = (£w cos x)g(—3w? cos 2x),
with the upper (lower) sign belonging to the retarded (advanced) Green’s function. Calculation
gives Gi*dX, = (% cos x)w*sin? x ¢'(0) dx d2, with a prime indicating differentiation with respect
to o; it should be noted that derivatives of the step function do not appear in this expression.
Integration of Gi*d¥,, with respect to df is immediate, and we find that Equation (237) reduces

to
T

lim [ 0(4cosx)w'sin? x ¢'(o) dx = —1. (238)

w—0 0

For the retarded Green’s function, the step function restricts the domain of integration to 0 < x <
7/2, in which o increases from —3w? to 2w?. Changing the variable of integration from x to o

transforms Equation (238) into

giir(l)e/iw(a/e) g'(0)do = —1, w(&) =4/ %_2, (239)
1,2

where € = w®. For the advanced Green’s function, the domain of integration is 7/2 < x < 7,

in which o decreases from %wz to —%wz. Changing the variable of integration from x to o also

produces Equation (239).

4.1.3 Singular part of g(o)

We have seen that Equation (239) properly encodes the influence of the singular source term
on both the retarded and advanced Green’s function. The function g(o) that enters into the
expressions of Equation (236) must therefore be such that Equation (239) is satisfied. It follows
immediately that g(o) must be a singular function, because for a smooth function the integral of
Equation (239) would be of order ¢, and the left-hand side of Equation (239) could never be made
equal to —1. The singularity, however, must be integrable, and this leads us to assume that ¢'(o)
must be made out of Dirac d-functions and derivatives.
We make the ansatz

g(o) =V(0)0(—0c) + Adé(o) + B (o) + C8" (o) + ..., (240)

where V(o) is a smooth function, and A, B, C, ...are constants. The first term represents a
function supported within the past and future light cones of ' = 0; we exclude a term proportional
to 6(o) for reasons of causality. The other terms are supported on the past and future light cones.
It is sufficient to take the coefficients in front of the J-functions to be constants. To see this we
invoke the distributional identities

06(c)=0 — 0d'(0)+d(0)=0 — o8 (0)+25(c)=0 — ..., (241)

from which it follows that 02 6’(¢) = 02 6”(0) = --- = 0. A term like f(0) d(o) is then distribution-
ally equal to f(0) d(o), while a term like f(o) ¢’(o) is distributionally equal to f(0) ¢'(o)— f'(0)d (o),
and a term like f(o)0” (o) is distributionally equal to f(0) 6" (o) — 2f(0)d"(c) + 2f”(0) 6(¢); here
f (o) is an arbitrary test function. Summing over such terms, we recover an expression of the form
of Equation (241), and there is no need to make A, B, C, ... functions of o.
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Differentiation of Equation (240) and substitution into Equation (239) yields

e/_ew(o/e) g (0)do =e [ eV/(J)w(a/e) do — V(0)w(0) — éw(O) + gw(()) - gw(?’) 0)+...],

—€

where overdots (or a number within brackets) indicate repeated differentiation with respect to
¢ = o/e. The limit € — 0 exists if and only if B =C = --- = 0. In the limit we must then have
Aw(0) = 1, which implies A = 1. We conclude that g(o) must have the form of

g(o) =0(0) +V(0)8(—0), (242)

with V(o) being a smooth function that cannot be determined from Equation (239) alone.

4.1.4 Smooth part of g(o)

To determine V(o) we must go back to the differential equation of Equation (235). Because the
singular structure of the Green’s function is now under control, we can safely set x # 2’ = 0 in
the forthcoming operations. This means that the equation to solve is in fact (O — k%)g(o) = 0, the
homogeneous version of Equation (235). We have Vo9 = ¢'04, VaVg = ¢"0005 + ¢'0ap, and
Og = 209" +4¢’, so that Green’s equation reduces to the ordinary differential equation

20" +4¢' — k%9 = 0. (243)
If we substitute Equation (242) into this we get
—(2V +k2)é(a) + (20V" + 4V’ — k*V)0(—0) = 0,

where we have used the identities of Equation (241). The left-hand side will vanish as a distribution
if we set

1
20V" 44V — k*V =0, V(0) = —51& (244)

These equations determine V(o) uniquely, even in the absence of a second boundary condition at
o = 0, because the differential equation is singular at ¢ = 0 and V' is known to be smooth.

To solve Equation (244) we let V' = F(z)/z, with z = k+/—20. This gives rise to Bessel’s
equation for the new function F:

2F,, +2F, + (2* —1)F = 0.

The solution that is well behaved near z = 0 is F' = aJ;(2), where a is a constant to be determined.
We have that .J;(z) ~ 1z for small values of z, and it follows that V ~ a/2. From Equation (244)
we see that a = —k?. So we have found that the only acceptable solution to Equation (244) is

k
V(o) = ———J1 (kv —20). 245
To summarize, the retarded and advanced solutions to Equation (235) are given by Equa-
tion (236) with g(o) given by Equation (242) and V(o) given by Equation (245).

4.1.5 Advanced distributional methods

The techniques developed previously to find Green’s functions for the scalar wave equation are
limited to flat spacetime, and they would not be very useful for curved spacetimes. To pursue this
generalization we must introduce more powerful distributional methods. We do so in this Section,
and in the next we shall use them to recover our previous results.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

The Motion of Point Particles in Curved Spacetime 61

Let 64 (x,X) be a generalized step function, defined to be one if x is in the future of the spacelike
hypersurface X, and defined to be zero otherwise. Similarly, define §_(z,X) =1 — 0, (z, %) to be
one if x is in the past of the spacelike hypersurface 3, and zero otherwise. Then define the light-cone

step functions
Oi(—0) =0,L(z,2)0(—0), ¥ ey, (246)

so that 6 (—o) is one if = is an element of I (z’), the chronological future of 2, and zero otherwise,
and 0_(—o) is one if x is an element of I~ (x’), the chronological past of z’, and zero otherwise;
the choice of hypersurface is immaterial so long as ¥ is spacelike and contains the reference point
z’. Notice that 04 (—0) +0_(—0) = 6(—0). Define also the light-cone Dirac functionals

di(0) = 04(2,%)d(0), ' ey, (247)

so that 4 (o), when viewed as a function of z, is supported on the future light cone of 2/, while
d_(o) is supported on its past light cone. Notice that d; (o) + d_(0) = §(0). In Equations (246)
and (247), o is the world function for flat spacetime; it is negative if z and 2’ are timelike related,
and positive if they are spacelike related.

The distributions 61 (—o) and 64 (o) are not defined at x = 2’ and they cannot be differentiated
there. This pathology can be avoided if we shift o by a small positive quantity e. We can therefore
use the distributions 64 (—oc — €) and d1 (0 + €) in some sensitive computations, and then take
the limit ¢ — 0F. Notice that the equation o + ¢ = 0 describes a two-branch hyperboloid that is
located just within the light cone of the reference point x’. The hyperboloid does not include x’, and
0 (z,Y) is one everywhere on its future branch, while 6_ (z, ) is one everywhere on its past branch.
These factors, therefore, become invisible to differential operators. For example, 0 (-0 —€) =
0 (2,2)0'(—0 —€) = —04(x,2)d(0c + €) = =6, (0 + €). This manipulation shows that after the
shift from o to o + ¢, the distributions of Equations (246) and (247) can be straightforwardly
differentiated with respect to o.

In the next paragraphs we shall establish the distributional identities

liI(I]l edr(o+¢€) =0, (248)
6l_i}%l+ e’ (o +¢€) =0, (249)
liISl € (0 +€) =2mé4(x — 2) (250)

in four-dimensional flat spacetime. These will be used in the next Section 4.1.6 to recover the
Green’s functions for the scalar wave equation, and they will be generalized to curved spacetime
in Section 4.2.

The derivation of Equations (248, 249, 250) relies on a “master” distributional identity, formu-
lated in three-dimensional flat space:

2
lim, % - gég(a:), R=/r2+ 2, (251)

with 7 = |z| = /22 + y2 + 22. This follows from yet another identity, V?r—! = —4nd3(x), in
which we write the left-hand side as lim,_q+ V2R™!; since R™! is nonsingular at « = 0, it can be
straightforwardly differentiated, and the result is V2ZR™! = —6¢/R®, from which Equation (251)
follows.

To prove Equation (248) we must show that i1 (o + €) vanishes as a distribution in the limit
€ — 0T. For this we must prove that a functional of the form

Ail[f] = lim [ eds(o +e€)f(x)dx,

e—0
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where f(z) = f(¢t,«) is a smooth test function, vanishes for all such functions f. Our first task
will be to find a more convenient expression for d4 (o + €). Once more we set 2’ = 0 (without loss
of generality) and we note that 2(o + €) = —t? + 12 + 2¢ = —(t — R)(t + R), where we have used
Equation (251). It follows that

t
dr(oc+e)= @, (252)
and from this we find
_ f j:R x) o € 4 i
62%1+/ Sr = €13%1+ ﬁR f(ER x)d*x = = [ 63(x)r*f(£r,x) d*x = 0,

which establishes Equation (248).
The validity of Equation (249) is established by a similar computation. Here we must show
that a functional of the form

Bilf] = lim [ e (0 + €)f(z)d*x

e—0t

vanishes for all test functions f. We have

(£R,x) , '
Bi[f]zegrél+e—/5i o+ef z—eli%1+e—/f xzeli%l+e/<:t};—}‘§3> d*z

— 15 3 2 3 37 2 3
= lim, R5(in R2f dx——/ég j:rf—rf)da:

:O,

and the identity of Equation (249) is proved. In these manipulations we have let an overdot indicate
partial differentiation with respect to ¢, and we have used dR/9¢ = 1/R.
To establish Equation (250) we consider the functional

Cilf] = lim [ e (o + €)f(x)d*r,

e—0

and show that it evaluates to 27 f(0,0). We have

_ . f(£R,x)
O R
= lim e / 2F3i—|—3— dPr =21 | 53( frzf“:l:rf—kf d*x
e—0t R3 3 3
=27£(0,0),

as required. This proves that Equation (250) holds as a distributional identity in four-dimensional
flat spacetime.
4.1.6 Alternative computation of the Green’s functions

The retarded and advanced Green’s functions for the scalar wave equation are now defined as the
limit of the functions G< (z, ') as ¢ — 0. For these we make the ansatz

G (z,2")=01(c+€)+V(0)0sL(—0 —¢), (253)

and we shall prove that G (z, 2') satisfies Equation (235) in the limit. We recall that the distribu-
tions A1 and d4 were defined in the preceding Section 4.1.5, and we assume that V(o) is a smooth
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function of o(z,2") = inaps(z — 2')%(z — 2’)P; because this function is smooth, it is not necessary
to evaluate V' at o + € in Equation (253). We recall also that 61 and d4 are nonzero when z is in
the future of z’, while #_ and §_ are nonzero when z is in the past of . We will therefore prove
that the retarded and advanced Green’s functions are of the form

Guala') = lim G4(2.2%) = 0, (2.9) [3(0) + V(o)h(~0) (254)
and
Gaav(z,2) = gli%lJr G (z,2') =0_(z,%) [06(c) + V(0)0(—0)], (255)

where Y is a spacelike hypersurface that contains z’. We will also determine the form of the
function V(o).

The functions that appear in Equation (253) can be straightforwardly differentiated. The
manipulations are similar to what was done in Section 4.1.4, and dropping all labels, we obtain
(0 - k?)G = 20G" + 4G’ — k*G, with a prime indicating differentiation with respect to o. From
Equation (253) we obtain G’ = ¢ — Vi +V’'0 and G"' = 6" — V§' —2V’6 + V"6. The identities of
Equation (241) can be expressed as (0 +¢€)d'(c+€) = —d(oc+¢€) and (c+¢€)8”'(c+€) = —28 (o +€),
and combining this with our previous results gives

(O - k)G (2,2") = (—2V = k*)dL (0 +€) + 20V + 4V — k*V)0i(—0 — €)
—2e0 (04 €)+2Ved (0 +€) +4V'ed (0 +e).
According to Equation (248, 249, 250), the last two terms on the right-hand side disappear in the
limit € — 07, and the third term becomes —4md4(x — z’). Provided that the first two terms vanish

also, we recover (00 — k?)G(x,2') = —4mds(z — 2') in the limit, as required. Thus, the limit of
G (z,2") as e — 0T will indeed satisfy Green’s equation provided that V(o) is a solution to

1
20V" + 4V’ — K2V =0, V(0) = —ikz; (256)

these are the same statements as in Equation (244). The solution to these equations was produced
in Equation (245),
k
Vie) = ———J1 (kvV—20), 257

and this completely determines the Green’s functions of Equations (254) and (255).

4.2 Distributions in curved spacetime

The distributions introduced in Section 4.1.5 can also be defined in a four-dimensional spacetime
with metric go3. Here we produce the relevant generalizations of the results derived in that section.

4.2.1 Invariant Dirac distribution

We first introduce d4(z, 2'), an invariant Dirac functional in a four-dimensional curved spacetime.
This is defined by the relations

/V f(@)8a(z,2")V/=gd'z = f(a'), » f(@")ou(a,2")y/—g' d'a’ = f(z), (258)

where f(z) is a smooth test function, V' any four-dimensional region that contains 2, and V' any
four-dimensional region that contains z. These relations imply that d4(z,2") is symmetric in its
arguments, and it is easy to see that

Oy(z — o) _ O4(z — ')
N BN

54(xaxl) = = (ggl)71/464(x - (E/), (259)
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where §4(z — 2') = §(2° — 2/0) §(2t — 2') 5(2? — 22)§(2® — 2/%) is the ordinary (coordinate)
four-dimensional Dirac functional. The relations of Equation (259) are all equivalent because
f(@)04(z,2") = f(2') d4(x,2’) is a distributional identity; the last form is manifestly symmetric in
x and 2’

The invariant Dirac distribution satisfies the identities

Q. (z,2")04(z,2") = [Q. ] da(z,2'),
(9% (z,2")04(2, 2")),, = —Oarba(z,2), (g“;(x',x)&;(x,x')) S —0a04(z, '),

)

(260)

where Q__(z,2") is any bitensor and g2, (z, z'), go‘ol (z,z") are parallel propagators. The first identity
follows immediately from the definition of the d-function. The second and third identities are
established by showing that integration against a test function f(z) gives the same result from
both sides. For example, the first of the Equations (258) implies

/V £ (2)0 4,2 ) g d*z = B ('),

and on the other hand,
/ f(@) (9% 64(x,2"))., V=g d'z = ]{ F(2)g%, 64z, 2" )dE0 + [f.ag®y] = Ou f(2),

which establishes the second identity of Equation (260). Notice that in these manipulations, the
integrations involve scalar functions of the coordinates x; the fact that these functions are also
vectors with respect to «’ does not invalidate the procedure. The third identity of Equation (260)
is proved in a similar way.

4.2.2 Light-cone distributions

For the remainder of Section 4.2 we assume that z € N'(2'), so that a unique geodesic 3 links these
two points. We then let o(x,z") be the curved spacetime world function, and we define light-cone
step functions by

01(—0)=0L(z,X)0(—0), r ey, (261)

where 6 (x,X) is one if z is in the future of the spacelike hypersurface ¥ and zero otherwise, and

0_(z,X) =1—04(x,%). These are immediate generalizations to curved spacetime of the objects

defined in flat spacetime by Equation (246). We have that 6, (—oc) is one if z is an element of

I'*t(2'), the chronological future of 2/, and zero otherwise, and 6_(—0c) is one if = is an element of

I ('), the chronological past of 2/, and zero otherwise. We also have 0 (—c) +0_(—0c) = 0(—0).
We define the curved-spacetime version of the light-cone Dirac functionals by

51 (o) = 04 (z,%)d(0), ' ex, (262)

an immediate generalization of Equation (247). We have that d; (o), when viewed as a function of
x, is supported on the future light cone of 2/, while 6_ (o) is supported on its past light cone. We
also have 61 (o) + 0_(0) = (o), and we recall that o is negative if x and 2’ are timelike related,
and positive if they are spacelike related.

For the same reasons as those mentioned in Section 4.1.5, it is sometimes convenient to shift
the argument of the step and J-functions from o to o + €, where € is a small positive quantity.
With this shift, the light-cone distributions can be straightforwardly differentiated with respect to
o. For example, 04 (0 + ¢) = =0 (—0o — €), with a prime indicating differentiation with respect to
.
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We now prove that the identities of Equation (248, 249, 250) generalize to

6lir[r)l+ edi(oc+¢€) =0, (263)
eli%l+ e’ (o +¢€) =0, (264)
lirtr)l €l (o0 +€) = 2mé4(z, ") (265)

in a four-dimensional curved spacetime; the only differences lie with the definition of the world
function and the fact that it is the invariant Dirac functional that appears in Equation (265).
To establish these identities in curved spacetime we use the fact that they hold in flat spacetime
— as was shown in Section 4.1.5 — and that they are scalar relations that must be valid in any
coordinate system if they are found to hold in one. Let us then examine Equations (263, 264) in
the Riemann normal coordinates of Section 3.1; these are denoted £ and are based at z’. We
have that o(z,2') = in.2°2” and 64(z,2") = A(z,2)és(z — 2') = d4(x — '), where A(z,2’)
is the van Vleck determinant, whose coincidence limit is unity. In Riemann normal coordinates,
therefore, Equations (263, 264, 265) take exactly the same form as Equations (248, 264, 250).
Because the identities are true in flat spacetime, they must be true also in curved spacetime (in
Riemann normal coordinates based at x’); and because these are scalar relations, they must be
valid in any coordinate system.

4.3 Scalar Green’s functions in curved spacetime
4.3.1 Green’s equation for a massless scalar field in curved spacetime

We consider a massless scalar field ®(z) in a curved spacetime with metric gog. The field satisfies
the wave equation

(0 - ER)®(x) = —dmp(x), (266)
where 0 = ¢g*f VaVg is the wave operator, R the Ricci scalar, £ an arbitrary coupling constant,

and u(z) is a prescribed source. We seek a Green’s function G(z,z’) such that a solution to
Equation (266) can be expressed as

b() = [ Gloo/yule!)/ =g d'a', (267)
where the integration is over the entire spacetime. The wave equation for the Green’s function is
(O0—ER)G(z,2") = —4Amdy(z,2'), (268)

where d4(z,2") is the invariant Dirac functional introduced in Section 4.2.1. It is easy to verify
that the field defined by Equation (267) is truly a solution to Equation (266).

We let G (x,2") be the retarded solution to Equation (268), and G_(z, ") be the advanced so-
lution; when viewed as functions of x, G (x, z') is nonzero in the causal future of 2/, while G_(z, 2')
is nonzero in its causal past. We assume that the retarded and advanced Green’s functions exist
as distributions and can be defined globally in the entire spacetime.

4.3.2 Hadamard construction of the Green’s functions

Assuming throughout this section that z is restricted to the normal convex neighbourhood of 2,
we make the ansatz
Gi(z,2")=U(z,2")04(0) + V(z,2" )01 (—0), (269)

where U(x,2’) and V(z,2’) are smooth biscalars; the fact that the spacetime is no longer homo-
geneous means that these functions cannot depend on ¢ alone.
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Before we substitute the Green’s functions of Equation (269) into the differential equation of
Equation (268), we proceed as in Section 4.1.6 and shift o by the small positive quantity e. We
shall therefore consider the distributions

G (z,2") =U(z,2' )01 (0 +€) + V(z,2")0L(—0 — ¢),

and later recover the Green’s functions by taking the limit ¢ — 0F. Differentiation of these
objects is straightforward, and in the following manipulations we will repeatedly use the relation
0%0, = 20 satisfied by the world function. We will also use the distributional identities oo (o +
€) = —edy(o+e€), 00 (04+¢€) =—d1(0+€)—€d (0+¢€), and 00 (0 +¢€) = =26 (0 +¢) —ed’ (o +¢).
After a routine calculation we obtain

(O—-ER)GL = =268 (0 + €)U + 2ed (0 + €)V + 8 (0 + €) {2U 0 + (0%, —4)U}
F0L(0+ {2V + (2 -0V + (- ER)U} +0+(—0 — ) {(D - RV},

which becomes

(O—¢R)Gy = —4Anby(z,2")U + 8, (0) {2U 0% + (¢, — 4)U}
+0+£(0){=2Va0® + (2= 0%)V + (0 - ER) UL + 0+ (—0) {(OD - ER)VE  (270)

in the limit € — 07, after using the identities of Equations (263, 264, 265).
According to Equation (268), the right-hand side of Equation (270) should be equal to —4mwd(x, 2').
This immediately gives us the coincidence condition

U] =1 (271)
for the biscalar U(z,z’). To eliminate the ¢/, term we make its coefficient vanish:
2U 40® + (0, — 4)U = 0. (272)

As we shall now prove, these two equations determine U (z, ") uniquely.

Recall from Section 2.1.3 that ¢® is a vector at x that is tangent to the unique geodesic
that connects = to z’. This geodesic is affinely parameterized by A and a displacement along (3 is
described by dxz® = (0%/A)dA. The first term of Equation (272) therefore represents the rate of
change of U(x, ') along (3, and this can be expressed as 2A dU/d\. For the second term we recall
from Section 2.5.1 the differential equation A~!(Ac®)., = 4 satisfied by A(z,2’), the van Vleck
determinant. This gives us 0% —4 = A™'A ,0% = A=A\ dA/d), and Equation (272) becomes

d

)\a (2InU —1InA) = 0.

It follows that U?/A is constant on 3, and it must therefore be equal to its value at the starting
point z’: U?/A = [U%/A] = 1, by virtue of Equation (271) and the property [A] = 1 of the van
Vleck determinant. Since this statement must be true for all geodesics 8 that emanate from z’,
we have found that the unique solution to Equations (271) and (272) is

Ulz,z') = AY?(z,2'). (273)

We must still consider the remaining terms in Equation (270). The §1 term can be eliminated
by demanding that its coefficient vanish when o = 0. This, however, does not constrain its value
away from the light cone, and we thus obtain information about V|,—¢ only. Denoting this by

V(z,z') — the restriction of V(z,2’) on the light cone o(x,z’) = 0 — we have

. 1 .
Vao®+ (0%, —-2)V =

3 O-¢rnu| (274)

o=0

N
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where we indicate that the right-hand side also must be restricted to the light cone. The first term
of Equation (274) can be expressed as /\dV/d)\, and this equation can be integrated along any
null geodesic that generates the null cone o(x,2’) = 0. For these integrations to be well posed,
however, we must provide initial values at x = z’. As we shall now see, these can be inferred from
Equation (274) and the fact that V(z,z’) must be smooth at coincidence.

Equations (97) and (273) imply that near coincidence, U(x, z") admits the expansion

]. ! !
U=1+ 5 Rago® o+ 003, (275)

where R, g is the Ricci tensor at @’ and A is the affine-parameter distance to = (which can be
either on or off the light cone). Differentiation of this relation gives

1 ’ ’ 1 ’
U =—c0%Rapo” +00?),  Ua = cRago” +O0(N), (276)
and eventually,
1

au] = ER(x’). (277)

Using also [0%,] = 4, we find that the coincidence limit of Equation (274) gives

1

V] =15 (1 = 68) R(z'), (278)

and this provides the initial values required for the integration of Equation (274) on the null cone.
Equations (274) and (278) give us a means to construct V(z,a’), the restriction of V(z,z’)
on the null cone o(z,z’) = 0. These values can then be used as characteristic data for the wave

equation
(D - SR)V(Ia .’E,) =0, (279)

which is obtained by elimination of the 64 term in Equation (270). While this certainly does not
constitute a practical method to compute the biscalar V(x,2), these considerations show that
V(z,z') exists and is unique.

To summarize: We have shown that with U(x, ') given by Equation (273) and V (x, ') deter-
mined uniquely by the wave equation of Equation (279) and the characteristic data constructed
with Equations (274) and (278), the retarded and advanced Green’s functions of Equation (269)
do indeed satisfy Equation (268). It should be emphasized that the construction provided in this
section is restricted to N'(z’), the normal convex neighbourhood of the reference point z’.

4.3.3 Reciprocity

We shall now establish the following reciprocity relation between the (globally defined) retarded
and advanced Green’s functions:

G_(2',z) = G4 (z,2). (280)

Before we get to the proof we observe that by virtue of Equation (280), the biscalar V' (x, z’) must
be symmetric in its arguments,

V(a' z) =V(x,a). (281)

To go from Equation (280) to Equation (281) we need simply note that if z € A (z’) and belongs
to IT(z"), then G (z,2') = V(z,2') and G_(2',2) = V(2', x).
To prove the reciprocity relation we invoke the identities

Gi(z,2)(O0—ER)G_(z,2") = —4n Gy (z,2")04(z, 2"")
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and

G_(z,2") (00— ER)Gy(z,2') = —4nG_(z,2")d4(z,2'),
and take their difference. On the left-hand side we have

Gi(z,2)OG_(x,2") — G_(z,2") 0G4 (z,2') =
Va (Gy(z,2)\VG_(z,2") — G_(2,2")V*Gy(z,2")),

while the right-hand side gives
—47 (G4 (z, 2" )0z, 2") — G_(z,2")04(z,2")) .

Integrating both sides over a large four-dimensional region V that contains both z’ and z”, we
obtain

f (Gy(z,2\'V*G_(2,2") — G_(2,2")V*Gy(z,2") dEq = —47 (G4 (2", 2") — G_(2',2")),
ov

where OV is the boundary of V. Assuming that the Green’s functions fall off sufficiently rapidly
at infinity (in the limit OV — oo; this statement imposes some restriction on the spacetime’s
asymptotic structure), we have that the left-hand side of the equation evaluates to zero in the
limit. This gives us the statement G (2", z') = G_(2',z"), which is just Equation (280) with z”
replacing x.

4.3.4 Kirchhoff representation

Suppose that the values for a scalar field ®(z’) and its normal derivative n® V., ®(z') are known
on a spacelike hypersurface X. Suppose also that the scalar field satisfies the homogeneous wave
equation

(O—¢R)P(x) = 0. (282)

Then the value of the field at a point x in the future of ¥ is given by Kirchhoff’s formula,

1

d(x) = 1 )y

(GJF(:c,x')VO‘/(I)(;U’) - @(x’)va’c;+(x,x')) S, (283)

where dX, is the surface element on X. If n, is the future-directed unit normal, then dX, =
—ngdV, with dV denoting the invariant volume element on X; notice that d¥, is past directed.
To establish this result we start with the equations

G_(2',z)(O0 — ERP(2') = 0, O(2') (O — ERNG_(2),z) = —4Amdy (2, 2)D(2"),
in which x and 2’ refer to arbitrary points in spacetime. Taking their difference gives
Vo (G_(z',z)va’@(x') — e )V G (x',x)) = 4y (2, 2)®('),

and this we integrate over a four-dimensional region V' that is bounded in the past by the hyper-
surface ¥. We suppose that V' contains = and we obtain

7{ (G- )V (') — 2o\ C_(0' 1)) A8 = dm(a),
ov
where d,/ is the outward-directed surface element on the boundary V. Assuming that the

Green’s function falls off sufficiently rapidly into the future, we have that the only contribution to
the hypersurface integral is the one that comes from X. Since the surface element on ¥ points in
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the direction opposite to the outward-directed surface element on 9V, we must change the sign of
the left-hand side to be consistent with the convention adopted previously. With this change we
have

1

d(z) = ——
(@) = =~ -

(G, (2, 2)V ®(2') — (b(x’)va,G,(x’,x)) d¥,
which is the same as Equation (283) if we take into account the reciprocity relation of Equa-
tion (280).

4.3.5 Singular and radiative Green’s functions

In Section 5 of this review we will compute the retarded field of a moving scalar charge, and we will
analyze its singularity structure near the world line; this will be part of our effort to understand the
effect of the field on the particle’s motion. The retarded solution to the scalar wave equation is the
physically relevant solution because it properly incorporates outgoing-wave boundary conditions
at infinity — the advanced solution would come instead with incoming-wave boundary conditions.
The retarded field is singular on the world line because a point particle produces a Coulomb field
that diverges at the particle’s position. In view of this singular behaviour, it is a subtle matter to
describe the field’s action on the particle, and to formulate meaningful equations of motion.

When facing this problem in flat spacetime (recall the discussion of Section 1.3), it is convenient
to decompose the retarded Green’s function G (x,z') into a singular Green’s function Gg(z, ') =
1[Gy (z,2") + G_(z,2')] and a radiative Green’s function Gg(z,2') = 1[Gy (z,2") — G_(z,2')].
The singular Green’s function takes its name from the fact that it produces a field with the same
singularity structure as the retarded solution: The diverging field near the particle is insensitive to
the boundary conditions imposed at infinity. We note also that Gg(z, ') satisfies the same wave
equation as the retarded Green’s function (with a Dirac functional as a source), and that by virtue
of the reciprocity relations, it is symmetric in its arguments. The radiative Green’s function, on the
other hand, takes its name from the fact that it satisfies the homogeneous wave equation, without
the Dirac functional on the right-hand side; it produces a field that is smooth on the world line of
the moving scalar charge.

Because the singular Green’s function is symmetric in its argument, it does not distinguish
between past and future, and it produces a field that contains equal amounts of outgoing and
incoming radiation — the singular solution describes standing waves at infinity. Removing Ggs(z, z’)
from the retarded Green’s function will therefore have the effect of removing the singular behaviour
of the field without affecting the motion of the particle. The motion is not affected because it is
intimately tied to the boundary conditions: If the waves are outgoing, the particle loses energy to
the radiation and its motion is affected; if the waves are incoming, the particle gains energy from
the radiation and its motion is affected differently. With equal amounts of outgoing and incoming
radiation, the particle neither loses nor gains energy and its interaction with the scalar field cannot
affect its motion. Thus, subtracting Gs(x,2’) from the retarded Green’s function eliminates the
singular part of the field without affecting the motion of the scalar charge. The subtraction leaves
behind the radiative Green’s function, which produces a field that is smooth on the world line; it
is this field that will govern the motion of the particle. The action of this field is well defined, and
it properly encodes the outgoing-wave boundary conditions: The particle will lose energy to the
radiation.

In this section we attempt a decomposition of the curved-spacetime retarded Green’s function
into singular and radiative Green’s functions. The flat-spacetime relations will have to be amended,
however, because of the fact that in a curved spacetime, the advanced Green’s function is generally
nonzero when z’ is in the chronological future of x. This implies that the value of the advanced
field at x depends on events 2’ that will unfold in the future; this dependence would be inherited
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by the radiative field (which acts on the particle and determines its motion) if the naive definition
Gr(z,2') = $[G4(z,2") — G_(z,2')] were to be adopted.

We shall not adopt this definition. Instead, we shall follow Detweiler and Whiting [23] and
introduce a singular Green’s function with the properties

Sc.S1: Gg(x, ') satisfies the inhomogeneous scalar wave equation,
(0 - ER)Gs(x,2") = —4mdy(x, 2'); (284)
Sc.S2: Gg(x,x') is symmetric in its arguments,
Gs(2',z) = Gs(z,2'); (285)
Sc.S3: Gs(z,z') vanishes if z is in the chronological past or future of a’,
Gs(z,z') =0  when z € I*(z'). (286)

Properties Sc.S1 and Sc.S2 ensure that the singular Green’s function will properly reproduce the
singular behaviour of the retarded solution without distinguishing between past and future; and
as we shall see, Property Sc.S3 ensures that the support of the radiative Green’s function will not
include the chronological future of x.

The radiative Green’s function is then defined by

Gr(z,2') = Gy (x,2") — Gs(z,2), (287)
where G4 (z,z') is the retarded Green’s function. This comes with the properties

Sc.R1: Ggr(z, ') satisfies the homogeneous wave equation,
(0 — €R)GRr(z,2") = 0 (288)

Sc.R2: Ggr(z,z') agrees with the retarded Green’s function if z is in the chronological future of
a,

Gr(z,2') = G4 (x,2) when x € I (2); (289)
Sc.R3: Ggr(z,z’) vanishes if z is in the chronological past of 2/,
Gr(z,2')=0  whenz € I~ (/). (290)

Property Sc.R1 follows directly from Equation (287) and Property Sc.S1 of the singular Green’s
function. Properties Sc.R2 and Sc.R3 follow from Property Sc.S3 and the fact that the retarded
Green’s function vanishes if x is in past of #’. The properties of the radiative Green’s function
ensure that the corresponding radiative field will be smooth at the world line, and will depend
only on the past history of the scalar charge.

We must still show that such singular and radiative Green’s functions can be constructed. This
relies on the existence of a two-point function H (z,z’) that would possess the properties

Sc.H1: H(z,') satisfies the homogeneous wave equation,
(O - ERH(z,a') = 0; (201)
Sc.H2: H(z,z') is symmetric in its arguments,

H(z',x) = H(z,2'); (292)
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Sc.H3: H(x,x') agrees with the retarded Green’s function if x is in the chronological future of
',

H(z,2') =Gy (z,2’)  whenx e IT(2); (293)

Sc.H4: H(xz,z') agrees with the advanced Green’s function if z is in the chronological past of
x,

H(z,2')=G_(z,2") when z € I~ (z'). (294)

With a biscalar H (z,x’) satisfying these relations, a singular Green’s function defined by
1
Gs(z,2') = 3 Gi(z,2")+ G_(x,2") — H(z,2")] (295)

will satisfy all the properties listed previously: Property Sc.S1 comes as a consequence of Prop-
erty Sc.H1 and the fact that both the advanced and the retarded Green’s functions are solutions
to the inhomogeneous wave equation, Property Sc.S2 follows directly from Property Sc.H2 and
the definition of Equation (295), and Property Sc.S3 comes as a consequence of Properties Sc.H3,
Property Sc.H4 and the properties of the retarded and advanced Green’s functions.

The question is now: Does such a function H (z,z’) exist? I will present a plausibility argument
for an affirmative answer. Later in this section we will see that H(z,z’) is guaranteed to exist in
the local convex neighbourhood of z’, where it is equal to V(z,2’). And in Section 4.3.6 we will
see that there exist particular spacetimes for which H(x,z") can be defined globally.

To satisfy all of Properties Sc.H4, Sc.H2, Sc.H3, and Sc.H4 might seem a tall order, but it
should be possible. We first note that Property Sc.H4 is not independent from the rest: It follows
from Property Sc.H2, Property Sc.H3, and the reciprocity relation (280) satisfied by the retarded
and advanced Green’s functions. Let € I~ ('), so that ' € I'*(z). Then H(x,2') = H(x',z) by
Property Sc.H2, and by Property Sc.H3 this is equal to G, (2, ). But by the reciprocity relation
this is also equal to G_(z,2’), and we have obtained Property Sc.H4. Alternatively, and this shall
be our point of view in the next paragraph, we can think of Property Sc.H3 as following from
Properties Sc.H2 and Sc.H4.

Because H(z,x') satisfies the homogeneous wave equation (Property Sc.H1), it can be given
the Kirkhoff representation of Equation (283): If ¥ is a spacelike hypersurface in the past of both
z and 2, then

1

H(ZL',I’/) = 75 .

(G+(z, VW H(z", 2y — H(z", 2" )V Gy (x, x'/)) dXqr,
where d¥, is a surface element on . The hypersurface can be partitioned into two segments,
Y7 (2') and ¥ — X7 (2), with ¥~ (2’) denoting the intersection of ¥ with I~ (z’). To enforce
Property Sc.H4 it suffices to choose for H(z,z’) initial data on X (2’) that agree with the initial
data for the advanced Green’s function; because both functions satisfy the homogeneous wave
equation in I~ ('), the agreement will be preserved in all of the domain of dependence of ¥~ ().
The data on X — X7 (') is still free, and it should be possible to choose it so as to make H(z, ')
symmetric. Assuming that this can be done, we see that Property Sc.H2 is enforced and we
conclude that the Properties Sc.H1, Sc.H2, Sc.H3, and Sc.H4 can all be satisfied.

When z is restricted to the normal convex neighbourhood of z’, Properties Sc.H1, Sc.H2, Sc.H3,
and Sc.H4 imply that

H(z,2')=V(x,2'); (296)

it should be stressed here that while H(x,2’) is assumed to be defined globally in the entire
spacetime, the existence of V (z,z’) is limited to N'(z’). With Equations (269) and (295) we find
that the singular Green’s function is given explicitly by

Gs(z,2') = %U(x, z')o(o) — %V(m,x’)&(o) (297)
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in the normal convex neighbourhood. Equation (297) shows very clearly that the singular Green’s
function does not distinguish between past and future (Property Sc.S2), and that its support
excludes I*(z'), in which 6(c) = 0 (Property Sc.S3). From Equation (287) we get an analogous
expression for the radiative Green’s function:

(2,2 = %U(x, ) [51.(0) = 6_(0)] + V(w,2) |0+ (o) + %0(0) . (208)

This reveals directly that the radiative Green’s function coincides with G4 (z,2’) in I (z'), in
which 6(o) = 0 and 0, (—0) = 1 (Property Sc.R2), and that its support does not include I~ (z'),
in which 6(o) = 0 (—0) = 0 (Property Sc.R3).

4.3.6 Example: Cosmological Green’s functions

To illustrate the general theory outlined in the previous Sections 4.3.1, 4.3.2, 4.3.3, 4.3.4, and 4.3.5,
we consider here the specific case of a minimally-coupled (£ = 0) scalar field in a cosmological
spacetime with metric

ds® = a*(n)(—dn? + dz* + dy? + d2?), (299)

where a(n) is the scale factor expressed in terms of conformal time. For concreteness we take the
universe to be matter dominated, so that a(n) = Cn?, where C is a constant. This spacetime
is one of the very few for which Green’s functions can be explicitly constructed. The calculation
presented here was first carried out by Burko, Harte, and Poisson [15]; it can be extended to other
cosmologies.

To solve Green’s equation G (x, ') = —4mwds(x, 2') we first introduce a reduced Green’s func-
tion g(z,z’) defined by

Glz,2') = L2200 (300)

Substitution yields
82 2 2 / / ’
—-——+V +? g(z,2") = —4nd(n — n')o3(x — '), (301)

where x = (z,v, 2) is a vector in three-dimensional flat space, and V2 is the Laplacian operator in
this space. We next expand g(x,z’) in terms of plane-wave solutions to Laplace’s equation,

1 ~ ik -(x—x’
g(z,2') = @ /g(n,n’;k)e’“( ) d*k, (302)

and we substitute this back into Equation (301). The result, after also Fourier transforming
d3(x — '), is an ordinary differential equation for g(n,n’; k),

d2 2 2 ~ ’
<+k —772>g=47f5(77—77), (303)

where k2 = k - k. To generate the retarded Green’s function we set

gr(n,n's k) =0(n—n'")g(n,n'; k), (304)

in which we indicate that § depends only on the modulus of the vector k. To generate the
advanced Green’s function we would set instead g—(n,n'; k) = 6(n' —n) §(n,7'; k). The following
manipulations will refer specifically to the retarded Green’s function; they are easily adapted to
the case of the advanced Green’s function.
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Substitution of Equation (304) into Equation (303) reveals that § must satisfy the homogeneous
equation

e, 2.
<d772+k n2>gO, (305)
together with the boundary conditions
. dg
gn=mn'"1k) =0, ﬁ(n =1'ik) = 4m. (306)

Inserting Equation (304) into Equation (302) and integrating over the angular variables associated
with the vector k yields

(A > .
gv(w5) = 550 [ g5k hsin(hr) d (307)
0

where An=n—17n' and R = |x — /.

Equation (305) has cos(kAn) — (kn)~!sin(kAn) and sin(kAn) + (kn)~! cos(kAn) as linearly
independent solutions, and §(n,n’; k) must be given by a linear superposition. The coefficients can
be functions of 7, and after imposing Equations (306) we find that the appropriate combination
is

. 47 1 . A
a(n,n's k) = - [(1 + W) sin(kAn) — an’ cos(kAn)| . (308)

Substituting this into Equation (307) and using the identity (2/7) [, sin(wz) sin(wz') dw = 6(z —
') = §(x + ') yields

gi(z,2') = oA — R) + 6(An) 2 /OOO !

2 sin(kA
7 PP k sin(kAn) cos(kR) dk

after integration by parts. The integral evaluates to (An — R).
We have arrived at
Sy = —lw—a')) | 0l ~ |z — ')
[z — 'l '
for our final expression for the retarded Green’s function. The advanced Green’s function is given
instead by

g+(z,2") = (309)

5y =+l ') O(n+n ~ |z —a)
|z — 'l " m’ '
The distributions g4 (x, z') are solutions to the reduced Green’s equation of Equation (301). The ac-
tual Green’s functions are obtained by substituting Equations (309) and (310) into Equation (300).
We note that the support of the retarded Green’s function is given by n —n’ > | — 2’|, while the
support of the advanced Green’s function is given by n — / < —|z — 2’|.
It may be verified that the symmetric two-point function

1
'
satisfies all of the Properties Sc.H1, Sc.H2, Sc.H3, and Sc.H4 listed in Section 4.3.5; it may thus be

used to define singular and radiative Green’s functions. According to Equation (295) the singular
Green’s function is given by

g-(z,2") = (310)

h(z,z') = (311)

1
g5(z.2') = o 51 =~ = 2/)) + 8l — ' + | — |
L o _ ’ _ _ _ /
g 0 o [ = 2/)) 00 — o + | — )], (312)
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and its support is limited to the interval —|xz — 2’| < n—n' < |x—=a’|. According to Equation (287)
the radiative Green’s function is given by

: 7 1801 =" =@ = a'l) = 3(n =" + | — 2]

N —
gr(@, @) = 2x —x

+ [0(n —n' — |z —a']) + 0(n — ' + & — &'|)]; (313)

21’
its support is given by n — ' > —|x — 2’|, and for n — ' > |x — x’| the radiative Green’s function
agrees with the retarded Green’s function.

As a final observation we note that for this cosmological spacetime, the normal convex neigh-
bourhood of any point x consists of the whole spacetime manifold (which excludes the cosmological
singularity at a = 0). The Hadamard construction of the Green’s functions is therefore valid glob-
ally, a fact that is immediately revealed by Equations (309) and (310).

4.4 Electromagnetic Green’s functions
4.4.1 Equations of electromagnetism

The electromagnetic field tensor Fo3 = Vo Ag — VA, is expressed in terms of a vector potential
Agq. In the Lorenz gauge V,A% = 0, the vector potential satisfies the wave equation

OA“ — R AP = —4rj*, (314)

where [0 = gaﬂvav@ is the wave operator, R the Ricci tensor, and j% a prescribed current
density. The wave equation enforces the condition V,j% = 0, which expresses charge conservation.
The solution to the wave equation is written as

() = [ 6% ) @)V (315)
in terms of a Green’s function G, (z,2’) that satisfies

0G% (,2") — R%(2)G’ (z,2") = —4mg%y (v,2")04(x, 2'), (316)

where g%, (x,2') is a parallel propagator and d4(x, ') an invariant Dirac distribution. The parallel
propagator is inserted on the right-hand side of Equation (316) to keep the index structure of
the equation consistent from side to side; because g% (z,2')ds(x, ') is distributionally equal to
[9%:]0a(z, 2") = 5"/;,64(36, 2’), it could have been replaced by either 6“5/, or §%. It is easy to check
that by virtue of Equation (316), the vector potential of Equation (315) satisfies the wave equation
of Equation (314).

We will assume that the retarded Green’s function G'%, (z,z"), which is nonzero if x is in the
causal future of 2/, and the advanced Green’s function G % (z,2'), which is nonzero if  is in the
causal past of 2/, exist as distributions and can be defined globally in the entire spacetime.

4.4.2 Hadamard construction of the Green’s functions

Assuming throughout this section that x is in the normal convex neighbourhood of z’, we make
the ansatz
Gy (z,2') = U% (x,2")0x(0) + Vi (2,2")0+(—0), (317)

where 04 (—0), 64(0o) are the light-cone distributions introduced in Section 4.2.2, and where
U% (x,2"), V% (z,2') are smooth bitensors.
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To conveniently manipulate the Green’s functions we shift ¢ by a small positive quantity e.
The Green’s functions are then recovered by the taking the limit of

% (z,2") = U% (z,2")0L(0 4+ €) + Vi (z,2")0+(—0 —€)

as € — 07. When we substitute this into the left-hand side of Equation (316) and then take the
limit, we obtain

OG.£y — R%G Ly = —4ndy(x, 2 ) U, + 04 (0) {2U%.,07 + (07, — U% }
+61(0) {—QV%/WU’Y +(2-0")V% +0U% — aﬁUﬁﬁ,}
+01(~0) {OV - RSV}
after a routine computation similar to the one presented at the beginning of Section 4.3.2. Com-
parison with Equation (316) returns

e the equations
[U%] = [9%] = 0% (318)
and
2U% .07 + (07, —4)U% =0 (319)
that determine U, (z,2');

e the equation

(ousy - reUY,) (320)

N | =

. 1 .
By 5(07"/ =2V = P

that determines V%, (z,2'), the restriction of V', (x, ") on the light cone o(z,2’) = 0; and
e the wave equation
OV — R%VY, =0 (321)
that determines V%, (x, ) inside the light cone.
Equation (319) can be integrated along the unique geodesic § that links 2’ to z. The initial con-
ditions are provided by Equation (318), and if we set U, (v, 2") = g%, (z,2")U(z,2"), we find that
these equations reduce to Equations (272) and (271), respectively. According to Equation (273),

then, we have
U(x, ') = g% (z,2") A2 (2,2)), (322)

which reduces to

o o 1 ’ ’
U% = g% (1 + ERW,(;/UV o + (’)()\3)> (323)

near coincidence, with A denoting the affine-parameter distance between z’ and z. Differentiation
of this relation gives

o 1 ’ o a/ 1 o ’
B’y = 5‘9’)%/ (g a/R B8 gg B/R,Y/(;/) 0'6 + O()\z), (324)
v, = (g, R Lo R L oA 325
By T g \J oty + §g g Rys | 07 +O(X), (325)
and eventually,
« 1 O(/
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Similarly, Equation (320) can be integrated along each null geodesic that generates the null
cone o(z,z’) = 0. The initial values are obtained by taking the coincidence limit of this equation,

using Equations (318), (326), and the additional relation [¢7,] = 4. We arrive at

V(o 1
Vil = —2< N QB’R/)' (327)

With the characteristic data obtained by integrating Equation (320), the wave equation of Equa-
tion (321) admits a unique solution.

To summarize, the retarded and advanced electromagnetic Green’s functions are given by Equa-
tion (317) with U, (z,2') given by Equation (322) and V%, (z,2’) determined by Equation (321)
and the characteristic data constructed with Equations (320) and (327). It should be emphasized
that the construction provided in this section is restricted to A/ (z'), the normal convex neighbour-
hood of the reference point z’.

4.4.3 Reciprocity and Kirchhoff representation

Like their scalar counterparts, the (globally defined) electromagnetic Green’s functions satisfy a
reciprocity relation, the statement of which is

Gyo(@' x) = G(tﬂ, (x,2"). (328)

The derivation of Equation (328) is virtually identical to what was presented in Section 4.3.3, and
we shall not present the details. It suffices to mention that it is based on the identities

Gy (x,2") (DG_“V,,(x,m”) - RO‘WG_’YA/,,(Q:,x”D = —4nG7y (x,2") g% (2, 2" )04(x, 2")
and

G (w,2") (DGfB, (z,2") = R%.G [y (a:,a:’)) = —dnG_ . (x,2") g% (v,2")04(x,2").

A direct consequence of the reciprocity relation is
Vara(z',2) = Vag (z,27), (329)

the statement that the bitensor Vag (z,2’) is symmetric in its indices and arguments.

The Kirchhoff representation for the electromagnetic vector potential is formulated as follows.
Suppose that A%(x) satisfies the homogeneous version of Equation (314) and that initial values
AY (2, n5/Vg/A"/ (2') are specified on a spacelike hypersurface X.. Then the value of the potential
at a point z in the future of X is given by

1 / / / ’
A%(@) = =~ /E (Gfﬁ, (z,2/)V7 A% (2') — A% (2 )V G 2 (:w’)) d%, (330)
where d¥, = —n.,dV is a surface element on X; n. is the future-directed unit normal and dV is

the invariant volume element on the hypersurface. The derivation of Equation (330) is virtually
identical to what was presented in Section 4.3.4.

4.4.4 Singular and radiative Green’s functions

We shall now construct singular and radiative Green’s functions for the electromagnetic field. The
treatment here parallels closely what was presented in Section 4.3.5, and the reader is referred to
that section for a more complete discussion.
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We begin by introducing the bitensor H, (x, z’) with properties
Em.H1: H¢%, (z,2') satisfies the homogeneous wave equation,
OH% (z,2) — R%(x)H', (z,2") = 0; (331)
Em.H2: H¢%, (z,2') is symmetric in its indices and arguments,
Hyo(2',2) = Hop (2,2"); (332)

Em.H3: HY, (z,2') agrees with the retarded Green’s function if « is in the chronological future

of o/,

H% (z,2') = G (x,2")  when z € I'"(z'); (333)
Em.H4: HY, (x,2") agrees with the advanced Green’s function if z is in the chronological past
of 7/,

H% (z,2") = G % (z,2") when z € I~ (/). (334)

It is easy to prove that Property Em.H4 follows from Property Em.H2, Property Em.H3, and the
reciprocity relation (328) satisfied by the retarded and advanced Green’s functions. That such a
bitensor exists can be argued along the same lines as those presented in Section 4.3.5.

Equipped with the bitensor H%, (z,z’) we define the singular Green’s function to be

1
Gl (w,2") = 3 (G (x,2") + G % (x,2") — H%, (2, 1")] . (335)
This comes with the properties
Em.S1: G¢% (7, 2") satisfies the inhomogeneous wave equation,
OGs% (z,2") — Raﬁ(x)Gsﬁﬁ, (z,2") = —4ng (z,2")d4(x, 2"); (336)
Em.S2: G¢%, (v, 2") is symmetric in its indices and arguments,
G%’a(x/7 ],‘) - Giﬁ’ (xv xl); (337)
Em.S3: Gg (w,2") vanishes if 2 is in the chronological past or future of 2,
G (z,2') =0  when z € I=(2/). (338)

These can be established as consequences of Properties Em.H1, Em.H2, Em.H3, and Em.H4, and
the properties of the retarded and advanced Green’s functions.
The radiative Green’s function is then defined by

Gry (z,2") = G % (x,2") — G (x,2"), (339)
and it comes with the properties

Em.RL: GR% (x,x") satisfies the homogeneous wave equation,

OG (v,2') — R%(2)Ggy (z,2") = 0; (340)
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Em.R2: Gg%, (z,2") agrees with the retarded Green’s function if z is in the chronological future
of 2/
Grly(x,2') = G (x,2")  when z € I (a'); (341)

Em.R3: Gg% (z,2") vanishes if  is in the chronological past of 2/,
GR(z,2') =0  whenz e I (2). (342)

Those follow immediately from Properties Em.S1, Em.S2, and Em.S3 and the properties of the
retarded Green’s function.
When z is restricted to the normal convex neighbourhood of 2/, we have the explicit relations

H% (z,2") = V% (x,a"), (343)
Gy (z,2") = %U“B, (z,2")6(0) — %V%, (x,2")0(0), (344)
Gy (0,0') = 50 (0.0 Bal0) = -] + Vi (2.0 |0 (-0 + 3000)] . (315)

From these we see clearly that the singular Green’s function does not distinguish between past and
future (Property Em.S2), and that its support excludes I (2") (Property Em.S3). We see also that
the radiative Green’s function coincides with G % (x, ') in I (2) (Property Em.R2), and that its
support does not include I~ (2’) (Property Em.R3).

4.5 Gravitational Green’s functions
4.5.1 Equations of linearized gravity

We are given a background spacetime for which the metric g, satisfies the Einstein field equations
in vacuum. We then perturb the metric from gqg to

8aB = Jap t+ haﬁ. (346)

The metric perturbation h,g is assumed to be small, and when working out the Einstein field
equations to be satisfied by the new metric g,g, we work consistently to first order in hyg. To
simplify the expressions we use the trace-reversed potentials y,s defined by

1
Yap = hap = 5 (97"126) Gas, (347)
and we impose the Lorenz gauge condition,
vy =0. (348)

In this equation, and in all others below, indices are raised and lowered with the background
metric go3. Similarly, the connection involved in Equation (348), and in all other equations below,
is the one that is compatible with the background metric. If 7%? is the perturbing stress-energy
tensor, then by virtue of the linearized Einstein field equations the perturbation field obeys the
wave equation

O0y*? + 2R % = —167T°7, (349)

in which O = go‘ﬁ VaVy is the wave operator and R,ns3 the Riemann tensor. In first-order
perturbation theory, the stress-energy tensor must be conserved in the background spacetime:
T, =0.

38
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The solution to the wave equation is written as
/6/
OB () = 4 / G . (2, 2T (2') /g da, (350)
in terms of a Green’s function Gai/(g, (x,2") that satisfies [53]

0G*? 5 (x,2') + 2R %P (@)G" 15, (,0") = —4mg'®, (x,2) "), (x, 2")04(z, "), (351)

where goif,(m, x') is a parallel propagator and d4(x,2’) an invariant Dirac functional. The parallel
propagators are inserted on the right-hand side of Equation (351) to keep the index structure of
the equation consistent from side to side; in particular, both sides of the equation are symmetric
in @ and 8, and in 4/ and §’. Tt is easy to check that by virtue of Equation (351), the perturbation
field of Equation (350) satisfies the wave equation of Equation (349). Once 7, is known, the
metric perturbation can be reconstructed from the relation hag = Yag — 5(97°V16)gas-

We will assume that the retarded Green’s function G fi, s (x,2"), which is nonzero if z is in
the causal future of x’, and the advanced Green’s function Gfi/ s (z,2"), which is nonzero if x is
in the causal past of x’, exist as distributions and can be defined globally in the entire background
spacetime.

4.5.2 Hadamard construction of the Green’s functions

Assuming throughout this section that x is in the normal convex neighbourhood of x’, we make
the ansatz
G s (w2 = U (2,0))01(0) + VO 5 (z,2")0+(—0), (352)

where 04 (—0), d1(0o) are the light-cone distributions introduced in Section 4.2.2, and where
Uo‘g,é/(w,x’), Va,f,é/(;v,x’) are smooth bitensors.

To conveniently manipulate the Green’s functions we shift ¢ by a small positive quantity e.
The Green’s functions are then recovered by the taking the limit of

G 5 (@,2)) = U™, 5 (2,2")0x (0 + €) + V5 (2,2)) 01 (—0 — €)

as € — 07. When we substitute this into the left-hand side of Equation (351) and then take the
limit, we obtain

0G0 + 2R PG o = —amsy(w, 2\ U5, + 81 (o) {ZUO‘?Y,(;,WU“’ + (07, — 4)U“§,5,}
o o a « )
+02(0) {2V 0 5,07+ (2= 0T VD + DU + 2R %0, )
1% a B §
+0:(-0) {OVD, + 2RV, )

after a routine computation similar to the one presented at the beginning of Section 4.3.2. Com-
parison with Equation (351) returns
e the equations
[U"fj, 5,} _ [gg,gﬁg,} — 5@ 5%) (353)

and
2UO¢5/5/;,\/0”Y + (O-’Y,Y - 4)Uag/§/ = O (354)

that determine Uag/é, (z,x');
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e the equation

- 1
VOL’?/&/;’YO_"/ + 5(0—"/

rQy a a 5
=2V = (DU 05+ 2RSS, 5/)‘020 (355)

that determines V* ,5,( '), the restriction of V7 L (z, @) on the light cone o(z,2") = 0;
and

e the wave equation
Ovels +2R %PV, =0 (356)

that determines V' ,5,( x') inside the light cone.

Equation (354) can be integrated along the unique geodesic [ that links 2’ to z. The initial con-

ditions are provided by Equation (353), and if we set U” ’6/( z') = ,g 5/U(x z'), we find that
these equations reduce to Equations (272) and (271), respectlvely Accordlng to Equation (273),
then, we have

U5 (w,2') = g (2, 2")g") (2,2 ) AY? (2, 2"), (357)

which reduces to
Uag/(;/ - g( /g 5 (1 + O()\3)) (358)

near coincidence, with A denoting the affine-parameter distance between z’ and x; there is no term
of order \? because, by assumption, the background Ricci tensor vanishes at 2’ (as it does in the
entire spacetime). Differentiation of this relation gives

Uag,g/;e = %g( ,gﬁg, (R%/E/L,é 5+ R% e ,55;,) ot +O0(\?), (359)
U5 0 = ; 9“4, (ng’,e,b,afi;, + R%’,E,L,éﬁ;,) o+ O\, (360)

and eventually,
[DU"‘f, 5,} = 0; (361)

this last result follows from the fact that [U ag’ 5] 18 antisymmetric in the last pair of indices.
Similarly, Equation (355) can be integrated along each null geodesic that generates the null
cone o(x,z’) = 0. The initial values are obtained by taking the coincidence limit of this equation,

using Equations (353), (361), and the additional relation [07,] = 4. We arrive at

(vels] = % (R + R%,%). (362)
With the characteristic data obtained by integrating Equation (355), the wave equation of Equa-
tion (356) admits a unique solution.

To summarize, the retarded and advanced gravitational Green s functions are given by Equa-
tion (352) with Uo‘f,é,(z,x’) given by Equation (357) and V¢ ,5,( z’) determined by Equa-
tion (356), and the characteristic data constructed with Equatlons (3 5) and (362). It should
be emphasized that the construction provided in this section is restricted to A/ (z’), the normal
convex neighbourhood of the reference point z’.
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4.5.3 Reciprocity and Kirchhoff representation

The (globally defined) gravitational Green’s functions satisfy the reciprocity relation
Glyap(@sm) = Gly s (x,2). (363)

The derivation of this result is virtually identical to what was presented in Sections 4.3.3 and 4.4.3.
A direct consequence of the reciprocity relation is the statement

V’y'é’aﬁ ({El7 [L‘) = Vaﬁ’ylé/ (.’L‘, CU/). (364)

The Kirchhoff representation for the trace-reversed gravitational perturbation v,z is formulated
as follows. Suppose that v*8(z) satisfies the homogeneous version of Equation (349) and that initial
values 70‘/5/ (), n”lvy/'ya/ﬁl(x’) are specified on a spacelike hypersurface ¥. Then the value of
the perturbation field at a point x in the future of ¥ is given by

@ ]_ a E/ ’sr 3V 6/ o
1) = g (G0 ) @) = @G ) A8, (365)
where d¥X¢r = —ndV is a surface element on ¥; n. is the future-directed unit normal and dV is

the invariant volume element on the hypersurface. The derivation of Equation (365) is virtually
identical to what was presented in Sections 4.3.4 and 4.4.3.

4.5.4 Singular and radiative Green’s functions

We shall now construct singular and radiative Green’s functions for the linearized gravitational
field. The treatment here parallels closely what was presented in Sections 4.3.5 and 4.4.4.
We begin by introducing the bitensor Hag,é,(x, a’) with properties

Gr.H1: Ho‘g,g,(m, x') satisfies the homogeneous wave equation,
OHp (.2') + 2R, (@) H (,27) = 0; (366)
Gr.H2: Hag,é,(a:, x') is symmetric in its indices and arguments,
Hysrap(t', 1) = Hapys (2, 27); (367)

Gr.H3: H af, s (x,x") agrees with the retarded Green’s function if « is in the chronological future
of 7/,

Ho"z/(;, (v,2') = Gf’i,é, (x,2") when z € I (2); (368)

Gr.H4: Ho‘g,é/(ac, a') agrees with the advanced Green’s function if z is in the chronological past
of o/,
Hag,(;,(x,x’) = Gf‘i,y (z,2')  whenz €I (2). (369)

It is easy to prove that Property Gr.H4 follows from Property Gr.H2, Property Gr.H3, and the
reciprocity relation (363) satisfied by the retarded and advanced Green’s functions. That such a
bitensor exists can be argued along the same lines as those presented in Section 4.3.5.

Equipped with Ho‘g/g, (x,2") we define the singular Green’s function to be

Gy (,2)) = = |G 205 (2, a)) + G20 (7)) — HY g (w,27) | (370)

1
2

This comes with the properties
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Gr.S1: Gsag, s (x,2") satisfies the inhomogeneous wave equation,
0G5 (x,2") + 2R (2)GS° 5 (w,0") = —4mg S (w,2)g ) (x, 2" )0a(w,2"); (371
S ~76'\ Ly v 8 S 4787\t - g,y/ T, T )G s:/\Ty T 4I711), ( )

Gr.S2: Gsagl(;/(x, 2’) is symmetric in its indices and arguments,
G,Sy/(;/a,@ (.’17/, CE) = Giﬁw’é’(% x/), (372)

Gr.S3: Gsag,é, (x,2’) vanishes if z is in the chronological past or future of 2/,

Gs 5 (x,2) =0 when z € I* (). (373)
These can be established as consequences of Properties Gr.H1, Gr.H2, Gr.H3, and Gr.H4, and the

properties of the retarded and advanced Green’s functions.
The radiative Green’s function is then defined by

Gy (@,a') = G205 (x,2") = G2 5 (2,2"), (374)
and it comes with the properties

Gr.R1: GRO‘g,J/ (x,2") satisfies the homogeneous wave equation,
0GR 5 (w,2') + 2R % (2)GR)% 5 (,a') = 0; (375)
Gr.R2: GRO‘?Y, 5 (x,2") agrees with the retarded Green’s function if z is in the chronological future
o GRO‘{}Y,(S/(;E, x') = Gfi,a,(;ﬂ, x') when z € I (2); (376)
Gr.R3: GRO",GY/J, (x,2') vanishes if z is in the chronological past of 2/,
GRO‘?{,J, (x,2')=0  when z € I~ (2'). (377)
Those follow immediately from Properties Gr.S1, Gr.S2, and Gr.S3, and the properties of the

retarded Green’s function.
When z is restricted to the normal convex neighbourhood of 2/, we have the explicit relations

Ho‘g,(;,(m, 7)) = Vo‘f,(;,(a:, x'), (378)
a 1 4 1 4

G g (3,2") = U %5 (x,2')3(0) — 5V 5 s (@,2)0(0), (379)
a 1 o o 1

G5 (z,a) = 53U O (@,0) [04(0) = 0_(0)] + V5 (2,2) {94—0) + 29(0)} . (380)

From these we see clearly that the singular Green’s function does not distinguish between past and
future (Property Gr.S2), and that its support excludes I*(2") (Property Gr.S3). We see also that

the radiative Green’s function coincides with Gfi,é,(m,x’) in I (z') (Property Gr.R2), and that

its support does not include I~ (2’) (Property Gr.R3).
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5 Motion of Point Particles

5.1 Motion of a scalar charge
5.1.1 Dynamics of a point scalar charge

A point particle carries a scalar charge ¢ and moves on a world line v described by relations z#(\),
in which A is an arbitrary parameter. The particle generates a scalar potential ®(z) and a field
O, (z) = Vo®(x). The dynamics of the entire system is governed by the action

S = Sﬁeld + Sparticle + Sinteractiom (381)

where Sgeiq is an action functional for a free scalar field in a spacetime with metric gog, Sparticle
is the action of a free particle moving on a world line v in this spacetime, and Sipteraction 1S an
interaction term that couples the field to the particle.

The field action is given by

1
Shta = 5 / (0°PBo s + ERD?) g d'z, (382)

where the integration is over all of spacetime; the field is coupled to the Ricci scalar R by an
arbitrary constant £. The particle action is

Sparticle = —mo/dT, (383)
Y

where my is the bare mass of the particle and dr = \/—g,., (2)2#2¥ dX is the differential of proper
time along the world line; we use an overdot on z#(\) to indicate differentiation with respect to
the parameter A. Finally, the interaction term is given by

Sinteraction = q/ O(z)dr = q/@(m)&l(:ﬁ,z)\/—g d*z dr. (384)
v

Notice that both Sparticle and Sipteraction are invariant under a reparameterization A — A (\) of
the world line.
Demanding that the total action be stationary under a variation 60®(x) of the field configuration
yields the wave equation
(0 - ¢R) d() = —4mpu(a) (385)

for the scalar potential, with a charge density p(z) defined by
pu(x) = q/ d4(z, 2) dr. (386)
2

These equations determine the field @, (x) once the motion of the scalar charge is specified. On the
other hand, demanding that the total action be stationary under a variation dz#(\) of the world
line yields the equations of motion for the scalar charge,
Dut
()2 = g (g ) @, (), (387)
T
We have here adopted 7 as the parameter on the world line, and introduced the four-velocity
u(1) = dz*/dr. The dynamical mass that appears in Equation (387) is defined by m(r) =
mo — q®(z), which can also be written in differential form as

dm

o = —q®,(2)ut. (388)
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It should be clear that Equations (387) and (388) are valid only in a formal sense, because the
scalar potential obtained from Equations (385) and (386) diverges on the world line. Before we can
make sense of these equations we have to analyze the field’s singularity structure near the world
line.

5.1.2 Retarded potential near the world line

The retarded solution to Equation (385) is ®(z) = [ G4 (z,2")u(z')\/g’ d*a’, where G (x,2') is
the retarded Green’s function introduced in Section 4.3. After substitution of Equation (386) we
obtain

d(x) = q/ Gy(x,z)dr, (389)

in which z(7) gives the description of the world line . Because the retarded Green’s function is
defined globally in the entire spacetime, Equation (389) applies to any field point .

Figure 9: The region within the dashed boundary represents the normal convex neighbourhood of
the point x. The world line v enters the neighbourhood at proper time T~ and exits at proper time
Ts. Also shown are the retarded point z(u) and the advanced point z(v).

We now specialize Equation (389) to a point x near the world line (see Figure 9). We let N'(x)
be the normal convex neighbourhood of this point, and we assume that the world line traverses
N (z). Let 7« be the value of the proper-time parameter at which v enters N'(z) from the past,
and let 7~ be its value when the world line leaves N'(z). Then Equation (389) can be broken down
into the three integrals

D(x) zq/ G+(a:,z)d7+q/ G+(x,z)d7'—|—q/ Gy(x,2)dr.

The third integration vanishes because z is then in the past of z(7), and Gy(x,z) = 0. For
the second integration, = is the normal convex neighbourhood of z(7), and the retarded Green’s
function can be expressed in the Hadamard form produced in Section 4.3.2. This gives

T> T> T>
/ Gy(x,z)dr :/ U(z,z)04+(0) dT+/ V(z,2)04(—0)dr,
T< T< T<

and to evaluate this we refer back to Section 3.3 and let 2’ = z(u) be the retarded point associated
with x; these points are related by o(z,2’) = 0 and r = oou® is the retarded distance between
x and the world line. We resume the index convention of Section 3.3: To tensors at  we assign

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

The Motion of Point Particles in Curved Spacetime 85

indices «, [, etc.; to tensors at &’ we assign indices o', ', etc.; and to tensors at a generic point
z(7) on the world line we assign indices u, v, etc.

To perform the first integration we change variables from 7 to o, noticing that ¢ increases as
z(7) passes through z’. The change of o on the world line is given by do = o(z, 2+ dz) —o(z,2) =
ouut dr, and we find that the first integral evaluates to U(z, z)/(o,u*) with z identified with z’.
The second integration is cut off at 7 = u by the step function, and we obtain our final expression
for the retarded potential of a point scalar charge:

u

O(z) = gU(x7,'];/) + q/ V(z,z)dr + q/_T<G+(x,z) dr. (390)

T<
This expression applies to a point x sufficiently close to the world line that there exists a nonempty
intersection between A (z) and +.
5.1.3 Field of a scalar charge in retarded coordinates

When we differentiate the potential of Equation (390) we must keep in mind that a variation in z
induces a variation in 2’ because the new points z + dx and z’ + dz’ must also be linked by a null
geodesic — you may refer back to Section 3.3.2 for a detailed discussion. This means, for example,
that the total variation of U(x,2’) is U = U(x + 6z, 2’ + 62') — U(x,2') = U.a02* + U.gru® du.
The gradient of the scalar potential is therefore given by

D, (x) = —%U(w,x')aar + gU;a(x,x') + gU;a/ (axw’)ua/aau + qV(z,2)0u + @ (z), (391)

where the “tail integral” is defined by

8 0) =g [ VaViz2)dr+q [ VaGi(o2)dr
T< —o0

-
= q/ VoGi(x,2)dr. (392)

—0o0
In the second form of the definition we integrate VG4 (z, z) from 7 = —o0o to almost 7 = u, but
we cut the integration short at 7 = v~ = u — 07 to avoid the singular behaviour of the retarded

Green’s function at ¢ = 0. This limiting procedure gives rise to the first form of the definition,
with the advantage that the integral need not be broken down into contributions that refer to
N (x) and its complement, respectively.

We shall now expand ®,(z) in powers of r, and express the results in terms of the retarded
coordinates (u,r,§2*) introduced in Section 3.3. It will be convenient to decompose ®,(x) in the
tetrad (eg,e®) that is obtained by parallel transport of (u®’,e%’) on the null geodesic that links
x to &' = z(u); this construction is detailed in Section 3.3. Note that throughout this section we
set wqp = 0, where wg; is the rotation tensor defined by Equation (138): The tetrad vectors eg/
are taken to be Fermi—Walker transported on 7. The expansion relies on Equation (166) for d,u,
Equation (168) for d,r, and we shall need

1
Ulz,2') =1+ ETQ (Roo + 2R0a Q" + RapQ°Q%) + O(r?), (393)
which follows from Equation (275) and the relation 0® = —r(u® + Q%2") first encountered in

Equation (144); recall that

Roo(u) = Rafﬂ/u“/uﬂl, Roq(u) = Ra/ﬁ/u("/eg/, Rap(u) = Ra/,gfegleﬁ
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are frame components of the Ricci tensor evaluated at x’. We shall also need the expansions

1 ,
Uo(z,2') = érgaa (Raro + Rabeb) +0(r?) (394)

and 1
U;o/ ('r7 x/)ua/ - _ér (ROO + ROaQa) + O(TQ)v (395)

which follow from Equations (276); recall from Equation (141) that the parallel propagator can be
expressed as g%, = u® €Y + 2 e%. And finally, we shall need

V(z,2) = % (1—66) R+ O(r), (396)

a relation that was first established in Equation (278); here R = R(u) is the Ricci scalar evaluated
at o’.
Collecting all these results gives

Do (u,r, Q%) = @y (x)ef ()

= gaaQ“ + %qRaoon“Qb + 11—2 (1 —6&)gR+ d + O(r), (397)
Dy (u,m, Q%) = Dy (v)eg (x)

=00, 1000, — R0, — g (Run® — R 2'0)

1 1 4
+ 54 [Roo — Rpe2°Q° — (1 — 6€)R] Qq + 5 (Rao + RapQ’) + @51 4+ O(r), (398)

’ .
where a, = aqn €S are the frame components of the acceleration vector,

’ ’ ’ ’ ’ ’ ’ ’
_ B8, 6 _ 5
RaObO (u) = Ra/,yzﬁ/(;/eg u” eb u Raboc(u) = Ra/,ylﬁ/(;/ eg eZ uﬁ ec

are frame components of the Riemann tensor evaluated at z’, and

opil(u) = (2 )u, @ (u) = 0 (2 ) (399)
are the frame components of the tail integral evaluated at z’. Equations (397) and (398) show
clearly that ®,(x) is singular on the world line: The field diverges as r~2 when r — 0, and many
of the terms that stay bounded in the limit depend on Q% and therefore possess a directional
ambiguity at r = 0.

5.1.4 Field of a scalar charge in Fermi normal coordinates

The gradient of the scalar potential can also be expressed in the Fermi normal coordinates of
Section 3.2. To effect this translation we make Z = z(t) the new reference point on the world line.
We resume here the notation of Section 3.4 and assign indices &, (3, ...to tensors at Z. The Fermi
normal coordinates are denoted (t,s,w®), and we let (€, &%) be the tetrad at = that is obtained
by parallel transport of (u®,eS) on the spacelike geodesic that links z to Z.

Our first task is to decompose ®,(z) in the tetrad (eg,é2), thereby defining &g = ®,e5 and

o, = ¢,e5. For this purpose we use Equations (224, 225) and (397, 398) to obtain

1 1
o= [1+ 0] &g+ |r (1 — ap’) a® + 57'2&“ + 57"2}2“01,0(21’ +0(r®)| @,

1 1 = tai
—506a2" + 5 (1 = 6€)gR + &6 + O(r)
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and

- 1 1
D, = 6%, + =r?a’a, — 1r? R0, Q2+ O(®) | @y + [raq, + O(r?)] g

2 2
1 1 1 1
= —20, - 20,00, + S a9’ a0 — SaRi00 XL — ZqRa0n0®” — 2 qRan0 000
r r 2 3 6 3
1 1 = ai
+ 754 [Roo — Rpc2"Q° — (1 — 6€)R] Qq + 5 (Rao + Rap?) + @51 + O(r),

where all frame components are still evaluated at 2/, except for 5! and @ which are evaluated
at T.

We must still translate these results into the Fermi normal coordinates (¢, s,w®). For this we
involve Equations (221, 222, 223), from which we deduce, for example,

iQ —iw +ia fia wbw f§a wba +E(awb)2w +§d w fld
r2a*82a28a 28b a4b a 8b a80a3a
1 1 1
+ C.lb"‘}b"‘}a + 6Ra0b0wb - §Rb0c0wbwcwa - gRabchbwc + O(S)
and
1

1 1 3 2 1, .
ZapQ, = ~apwlw, + iabwbaa ~3 (abwb) Wq — iaowa — apwlw, + O(s),
s

,
in which all frame components (on the right-hand side of these relations) are now evaluated at
T; to obtain the second relation we expressed aq(u) as a,(t) — saq(t) + O(s?), since according to
Equation (221), u =t — s + O(s?).

Collecting these results yields

Do (t,5,w) = D, (x)e] ()

1 1 o
= — 50w + 5 (1= 6€)gR + il 1 O(s), (400)
Dy (t,5,0%) = Pu(2)eg (7)
3 3 1 1
= —S%wa — % (20 — apw'wa) + Jqarw’an — 2q (ap?)” wa + SdGowa + 3
1 1 1
— quaObowb + équocowbwcwa + 154 [Roo — Rpew’w® — (1 — 66)R] wq
1 -
+ 54 (Rao + Rapw®) + @51 4+ O(s). (401)

In these expressions, a,(t) = azed are the frame components of the acceleration vector evaluated
at T, ap(t) = aau® and a4(t) = agey are frame components of its covariant derivative, Raop0(t) =

R Bgeguﬁef u® are frame components of the Riemann tensor evaluated at z,

Roo(t) = R&Bu&ug, Roq(t) = R&Bua‘eﬂ Rap(t) = Rdgeg‘eﬁ

are frame components of the Ricci tensor, and R(t) is the Ricci scalar evaluated at z. Finally, we
have that o . . o . )
B (r) = B Dut,  BE() = @(@)el (102)

are the frame components of the tail integral — see Equation (392) — evaluated at & = z(t).

We shall now compute the averages of ®; and ®, over S(t,s), a two-surface of constant t
and s; these will represent the mean value of the field at a fixed proper distance away from the
world line, as measured in a reference frame that is momentarily comoving with the particle.
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The two-surface is charted by angles #4 (A = 1,2) and it is described, in the Fermi normal
coordinates, by the parametric relations 2% = sw®(64); a canonical choice of parameterization is
w® = (sinf cos ¢, sin O sin ¢, cos ). Introducing the transformation matrices w4 = dw?/I04, we
find from Equation (127) that the induced metric on S(t, s) is given by

1
ds® = §* [WAB - gSQRAB + (9(53)] do*de’®, (403)
b, d

where wap = Jabw“Aw% is the metric of the unit two-sphere, and where Rap = Rgcpawswwpw
depends on t and the angles 8. From this we infer that the element of surface area is given by

dA = §* {1 - %schacb(t)w“wb + (9(33)} s, (404)

where dQ) = y/detlwap]d?d is an element of solid angle — in the canonical parameterization,
dQ = sinfdfd¢. Integration of Equation (404) produces the total surface area of S(t,s), and
A=dns?[l — Ls?R®, + O(s%)).

The averaged fields are defined by
5 1 = A = 1 = A
<<I>o> (t,s) = — D (t,s,07) dA, <‘I>a> (t,8) = — D, (t,s,07)dA, (405)
S(t,s) A Js(t.s)

where the quantities to be integrated are scalar functions of the Fermi normal coordinates. The
results

1 1 1 1
- ad0 = - abdng(sab 7% abch: 4
ol 0, 4ﬂ%ww 397 g w’w 0, (406)
are easy to establish, and we obtain
_ 1 o
(®o) = 5 (1 = 6)qR + 25 + O(s), (407)
FS [ 1 Ftai
(®,) = _3%% + 390 + éqRao + @il L O(s). (408)

The averaged field is still singular on the world line. Regardless, we shall take the formal limit
s — 0 of the expressions displayed in Equations (407) and (408). In the limit the tetrad (€, €%)
reduces to (u%,e?), and we can reconstruct the field at z by invoking the completeness relations

55‘3 = —uug + eg‘e%. We thus obtain

1 1.5 1
(Pg) = lim (—i) ag — — (1= 6€)qRug + q (9a5 + vaus) <d5 + -

R ) + @, (409
20\ 3s 12 37 6 ”U)Jr e 1)

where the tail integral can be copied from Equation (392),

-
il (z) = g / VaGo(z,2)dr. (410)

The tensors appearing in Equation (409) all refer to Z = z(t), which now stands for an arbitrary
point on the world line 7.
5.1.5 Singular and radiative fields

The singular potential

®5(x) = q/Gs(x,z) dr (411)
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is the (unphysical) solution to Equations (385) and (386) that is obtained by adopting the singular
Green’s function of Equation (295) instead of the retarded Green’s function. As we shall see,
the resulting singular field ®3(z) reproduces the singular behaviour of the retarded solution; the
difference, ®%(z) = @, (z) — ®5 (), is smooth on the world line.

To evaluate the integral of Equation (411) we assume once more that z is sufficiently close
to v that the world line traverses N'(x) (refer back to Figure 9). As before we let 7. and 7~ be
the values of the proper-time parameter at which v enters and leaves N (z), respectively. Then
Equation (411) can be broken down into the three integrals,

5 () :q/ Gs(x,z)d7+q/ Gs(x7z)d7+q/ Gs(z,z)dr.
—o00 T< T

The first integration vanishes because x is then in the chronological future of z(7), and Gs(z,2) =0
by Equation (286). Similarly, the third integration vanishes because x is then in the chronological
past of z(7). For the second integration, x is the normal convex neighbourhood of z(7), the singular
Green’s function can be expressed in the Hadamard form of Equation (297), and we have

T> 1 T> 1 T> 1 T>
/ Gs(z,z)dr = 7/ U(z,z)o4(0)dr + 7/ U(z,z)0_(o)dr — f/ V(z,2)0(o)dr.
T< 2 T< 2 T< 2 T<

To evaluate these we re-introduce the retarded point ' = z(u) and let 2"/ = z(v) be the advanced
point associated with z; we recall from Section 3.4.4 that these points are related by o(z,z”) =0
and that r,qy = —Ua//ua” is the advanced distance between x and the world line.

To perform the first integration we change variables from 7 to o, noticing that ¢ increases
as z(7) passes through z’; the integral evaluates to U(x,2’)/r. We do the same for the second
integration, but we notice now that o decreases as z(7) passes through z”’; the integral evaluates
to U(z,x")/raav. The third integration is restricted to the interval u < 7 < v by the step function,
and we obtain our final expression for the singular potential of a point scalar charge:

v

Uz, z") — %q/V(m, z)dr. (412)

q ’
®5(z) = ZU(z,x
(@) = gV, + 5
We observe that ®5 (z) depends on the state of motion of the scalar charge between the retarded
time v and the advanced time v; contrary to what was found in Section 5.1.2 for the retarded
potential, there is no dependence on the particle’s remote past.
We use the techniques of Section 5.1.3 to differentiate the potential of Equation (412). We find

q q q ’
PS5 _ _ / _ " ’ i s / A7, N,
> (x) 5,2 U(z,z")0ur SR U(z,2")0qTadv + o Ual(z,z') + 5y Usa (z, 2" ) u® Oqu
1" 1 1
+ LU;Q(J:, z") + a U (z, 2" ) u® 0qv + =qV (2, 2")00u — =qV (x,2")0qv
27‘adv Tadv 2 2
1 v
- iq/VaV(:v,z) dr, (413)
u

and we would like to express this as an expansion in powers of r. For this we shall rely on results
already established in Section 5.1.3, as well as additional expansions that will involve the advanced
point z”/. Those we develop now.

We recall first that a relation between retarded and advanced times was worked out in Equa-
tion (229), that an expression for the advanced distance was displayed in Equation (230), and that
Equations (231) and (232) give expansions for d,v and 94 7adv, respectively.

To derive an expansion for U(z, z"") we follow the general method of Section 3.4.4 and define a
function U(7) = U(x, 2(7)) of the proper-time parameter on . We have that

Ulz,z") = U@w) =U(u+ &) = Ulu) + U(u) AN + %U(u)AQ +0 (A%,
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where overdots indicate differentiation with respect to 7, and where A’ = v — u. The leading term
U(u) = U(x,x’) was worked out in Equation (393), and the derivatives of U(7) are given by

’

. 1
U(u) =Uypu® = —67“ (Roo + Roa2) + O(TQ)

)

and )
Uu) = U pu® v + Ugra® = g oo +0O(r),
according to Equations (395) and (276). Combining these results together with Equation (229) for
A gives
1
Ulz,z") =1+ ETQ (Roo — 2R0a Q" + RapQ*Q%) + O(r?), (414)

which should be compared with Equation (393). It should be emphasized that in Equation (414)
and all equations below, the frame components of the Ricci tensor are evaluated at the retarded
point &’ = z(u), and not at the advanced point. The preceding computation gives us also an

expansion for U.anu® = U(v) = U(u) + U(u)N + O(A?). This becomes

" 1

U (z, 2" )u® = 5"

(Roo — RoaQ2") + O(r?), (415)

which should be compared with Equation (395).

We proceed similarly to derive an expansion for U.,(z,z”). Here we introduce the functions
Ua(7) = Uo(x, 2(7)) and express U.q(z,2") as Uy (v) = Un(u) + Uy (u) X + O(N?). The leading
term Uy (u) = U,o(x,2’) was computed in Equation (394), and

. , 1
Ua(u) = Uapru” = =59 Raro + O(r)

follows from Equation (276). Combining these results together with Equation (229) for A’ gives
1 ’
U'Oz(x7x”) = 767‘gaa (Ra’O - Ra’be) + O(TQ)v (416)

and this should be compared with Equation (394).
The last expansion we shall need is

V(z,2") = 1—12 (1-65) R+ O(r), (417)

which follows at once from Equation (396) and the fact that V(z,z"”) — V(z,2") = O(r); the Ricci
scalar is evaluated at the retarded point z’.

It is now a straightforward (but tedious) matter to substitute these expansions (all of them!)
into Equation (413) and obtain the projections of the singular field ®3(z) in the same tetrad
(ed,e2) that was employed in Section 5.1.3. This gives

5 (u, 7, Q) = O (x)ef (2)

1
= 4,0 + ZqRaono 22" + O(1), (418)
r
5 (u,r, Q%) = @5 (x)eg ()

1.1 . 1 .
= —%Qa - gabﬂbﬁa ~ 54 — AR — £ (Raono? — Rapoc ')

1 1
+ 154 [Roo — Rpe2"9Q° — (1 — 6€)R] Qq + 6qRabe7 (419)
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in which all frame components are evaluated at the retarded point 2’ = z(u). Comparison of these
expressions with Equations (397) and (398) reveals that the retarded and singular fields share the
same singularity structure.

The difference between the retarded field of Equations (397, 398) and the singular field of
Equations (418, 419) defines the radiative field ®%(z). Its tetrad components are

1 N

O = ﬁ(1 —68)qR + O 4+ O(r), (420)
1 1 .

O = 3400+ caRa0 + i+ O(r), (421)

and we see that ®®(z) is a smooth vector field on the world line. There is therefore no obstacle
in evaluating the radiative field directly at © = 2/, where the tetrad (e, es) becomes (u® e ).

Reconstructing the field at z’ from its frame components, we obtain

1 1.y 1 5 .
(I)l;/ (.’I}l) = —ﬁ(l — 6§)qRua/ =+ q (galﬁl =+ ’LLO/’U,B/) (3&5 + ERﬁ,y,U’Y ) + q):;a/ll, (422)
where the tail term can be copied from Equation (392),
otz = q/ Vo Gy, z)dr. (423)
—00

The tensors appearing in Equation (422) all refer to the retarded point 2’ = z(u), which now
stands for an arbitrary point on the world line ~.

5.1.6 Equations of motion

The retarded field @, (z) of a point scalar charge is singular on the world line, and this behaviour
makes it difficult to understand how the field is supposed to act on the particle and affect its motion.
The field’s singularity structure was analyzed in Sections 5.1.3 and 5.1.4, and in Section 5.1.5 it
was shown to originate from the singular field ®5 (z); the radiative field ®%(z) = &, (z) — ®5 ()
was then shown to be smooth on the world line.

To make sense of the retarded field’s action on the particle we temporarily model the scalar
charge not as a point particle, but as a small hollow shell that appears spherical when observed in
a reference frame that is momentarily comoving with the particle; the shell’s radius is s¢ in Fermi
normal coordinates, and it is independent of the angles contained in the unit vector w®. The net
force acting at proper time 7 on this hollow shell is the average of ¢®, (7, sp,w®) over the surface
of the shell. This was worked out at the end of Section 5.1.4, and ignoring terms that disappear
in the limit sg — 0, we obtain

1 1 sV 1 v i
q(®.) = —(0m)a, — E(l - 6§)q2R“u +q (G + uptts) (3@ + ER )\u’\) + q(I)La g (424)
where
e
om= lim — 425
m= e (425)
is formally a divergent quantity and
q@ff“ = q2/ V,.Gy (2(7),2(7")) dr’ (426)
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is the tail part of the force; all tensors in Equation (424) are evaluated at an arbitrary point z(7)
on the world line.
Substituting Equations (424) and (426) into Equation (387) gives rise to the equations of motion

1 1 T
(m + om)a = ¢* (6", + u'u,) gd” + ER”/\UA + / VG4 (2(1),2(7")) dr’ (427)

for the scalar charge, with m = my — ¢®(z) denoting the (also formally divergent) dynamical mass
of the particle. We see that m and dm combine in Equation (427) to form the particle’s observed
mass Meps, which is taken to be finite and to give a true measure of the particle’s inertia. All
diverging quantities have thus disappeared into the process of mass renormalization. Substituting
Equations (424) and (426) into Equation (388), in which we replace m by meps = m + dm, returns
an expression for the rate of change of the observed mass,

dmobs o 1
dr 12

(1 —6£)¢°R — ¢*ut /T V.G (2(7),2(7")) dr'. (428)

— 00

That the observed mass is not conserved is a remarkable property of the dynamics of a scalar
charge in a curved spacetime. Physically, this corresponds to the fact that in a spacetime with a
time-dependent metric, a scalar charge radiates monopole waves and the radiated energy comes at
the expense of the particle’s inertial mass.

Apart from the term proportional to dm, the averaged field of Equation (424) has exactly the
same form as the radiative field of Equation (422), which we re-express as

1 1 1 ;
q®); = (1 —68)¢*Ruy, + ¢* (g + upuy) (d” + 6R”,\uA> + @i (429)

12 3

The force acting on the point particle can therefore be thought of as originating from the (smooth)
radiative field, while the singular field simply contributes to the particle’s inertia. After mass
renormalization, Equations (427) and (428) are equivalent to the statements

mat = q (g™ + utu?) dR(2), Z—T = —qu“@f}(z), (430)
where we have dropped the superfluous label “obs” on the particle’s observed mass. Another
argument in support of the claim that the motion of the particle should be affected by the radiative
field only was presented in Section 4.3.5.

The equations of motion displayed in Equations (427) and (428) are third-order differential
equations for the functions z#(7). It is well known that such a system of equations admits many
unphysical solutions, such as runaway situations in which the particle’s acceleration increases
exponentially with 7, even in the absence of any external force [25, 30, 47]. And indeed, our
equations of motion do not yet incorporate an external force which presumably is mostly responsible
for the particle’s acceleration. Both defects can be cured in one stroke. We shall take the point of
view, the only admissible one in a classical treatment, that a point particle is merely an idealization
for an extended object whose internal structure — the details of its charge distribution — can be
considered to be irrelevant. This view automatically implies that our equations are meant to
provide only an approzimate description of the object’s motion. It can then be shown [17, 26] that
within the context of this approximation, it is consistent to replace, on the right-hand side of the
equations of motion, any occurrence of the acceleration vector by f4 ,/m, where f., is the external
force acting on the particle. Because f.., is a prescribed quantity, differentiation of the external
force does not produce higher derivatives of the functions z#(7), and the equations of motion are
properly of second order.
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We shall therefore write, in the final analysis, the equations of motion in the form

m2¥ Du*
dr

1 DfY T
ext + q (6uu + UNUV) [ ext + RUAU’ + VUGJF (Z(T)v Z(TI)) dT/ (431)

3m dr

and

am _ 1 6e)2R— g u“/ V.G (2(), 2(+) d, (432)
dr 12

where m denotes the observed inertial mass of the scalar charge, and where all tensors are evaluated
at z(7). We recall that the tail integration must be cut short at 7/ = 7= = 7 — 0% to avoid the
singular behaviour of the retarded Green’s function at coincidence; this procedure was justified at
the beginning of Section 5.1.3. Equations (431) and (432) were first derived by Theodore C. Quinn
in 2000 [48]. In his paper Quinn also establishes that the total work done by the scalar self-force
matches the amount of energy radiated away by the particle.

5.2 Motion of an electric charge
5.2.1 Dynamics of a point electric charge

A point particle carries an electric charge e and moves on a world line v described by relations
zM(\), in which X is an arbitrary parameter. The particle generates a vector potential A%(z) and
an electromagnetic field Fig(z) = VoA — VgA,. The dynamics of the entire system is governed
by the action

S = Sﬁeld + Sparticle + Sinteraction7 (433)

where Shelq is an action functional for a free electromagnetic field in a spacetime with metric g,g,
Sparticle 15 the action of a free particle moving on a world line v in this spacetime, and Sinteraction
is an interaction term that couples the field to the particle.

The field action is given by

1
Skela = =16~ | FagF*’v=gd's, (434)

where the integration is over all of spacetime. The particle action is
Sparticle - *m/dTa (435)
¥

where m is the bare mass of the particle and dr = \/—g,. (2)2#2¥ dX is the differential of proper
time along the world line; we use an overdot to indicate differentiation with respect to the parameter
A. Finally, the interaction term is given by

Sintcraction - 6/ Au(Z)ZM dh=e / Aa(l')ga#(l', Z)Z”(M(l’, Z) vV—g d4ﬂi)‘ (436)
i

Notice that both Sparticle and Sipteraction are invariant under a reparameterization A — A (\) of
the world line.
Demanding that the total action be stationary under a variation § A%(x) of the vector potential
yields Maxwell’s equations
FP = 4rj® (437)

with a current density j*(z) defined by

i%(z) = e/ 9 (2, 2)2" 64 (2, 2) dA. (438)
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These equations determine the electromagnetic field Fiz, once the motion of the electric charge
is specified. On the other hand, demanding that the total action be stationary under a variation
0z*(\) of the world line yields the equations of motion for the electric charge,

m— =eF" (2)u”. (439)

We have adopted 7 as the parameter on the world line, and introduced the four-velocity u#(7) =
dzt/dr.

The electromagnetic field F,3 is invariant under a gauge transformation of the form A, —
Aq + VoA, in which A(z) is an arbitrary scalar function. This function can always be chosen so
that the vector potential satisfies the Lorenz gauge condition,

Vo A® =0. (440)

Under this condition the Maxwell equations of Equation (437) reduce to a wave equation for the
vector potential,

OA* — R% AP = —4mj®, (441)

where [ = gaﬂvavﬁ is the wave operator and R is the Ricci tensor. Having adopted 7 as the
parameter on the world line, we can re-express the current density of Equation (438) as

i%(x) = e/g”‘u(x, 2)utdq(z, 2) dr, (442)

and we shall use Equations (441) and (442) to determine the electromagnetic field of a point electric
charge. The motion of the particle is in principle determined by Equation (439), but because the
vector potential obtained from Equation (441) is singular on the world line, these equations have
only formal validity. Before we can make sense of them we will have to analyze the field’s singularity
structure near the world line. The calculations to be carried out parallel closely those presented
in Section 5.1 for the case of a scalar charge; the details will therefore be kept to a minimum and
the reader is referred to Section 5.1 for additional information.

5.2.2 Retarded potential near the world line

The retarded solution to Equation (441) is A*(z) = [ G % (=, )7 (2')\/g’ d*z’, where G S (x,2)
is the retarded Green’s function introduced in Section 4.4. After substitution of Equation (442)
we obtain

A%(x) = e/ G £ (z, 2)ut dr, (443)

in which z#(7) gives the description of the world line v and w*(7) = dz*/dr. Because the retarded
Green’s function is defined globally in the entire spacetime, Equation (443) applies to any field
point x.

We now specialize Equation (443) to a point x close to the world line. We let A(x) be the
normal convex neighbourhood of this point, and we assume that the world line traverses N (z)
(refer back to Figure 9). As in Section 5.1.2 we let 7~ and 7~ be the values of the proper-time
parameter at which v enters and leaves N (z), respectively. Then Equation (443) can be expressed
as

T< > o0
A%(x) = e/ G (z, z)ut dr + e/ G (z, z)ut dr + e/ G (x, 2)ut dr.
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The third integration vanishes because z is then in the past of z(7), and G (v,2) = 0. For
the second integration, = is the normal convex neighbourhood of z(7), and the retarded Green’s
function can be expressed in the Hadamard form produced in Section 4.4.2. This gives

/ G2 (x, z)ut dT:/ U, (x, 2)utdy (o) dT+/ Ve (2, 2)ut0,(—0o) dr,

<

and to evaluate this we let 2’ = z(u) be the retarded point associated with z; these points are
related by o(z,2') = 0 and 7 = oou® is the retarded distance between z and the world line. To
perform the first integration we change variables from 7 to o, noticing that o increases as z(7)
passes through z’; the integral evaluates to U uP /r. The second integration is cut off at 7 = u
by the step function, and we obtain our final expression for the vector potential of a point electric
charge:

, u T<
A% (x) ¢ U% (z, 2" )u” + e/ Ve (x, 2)u dr + 6/ G (x, z)ut dr. (444)
— 00

= 5
This expression applies to a point x sufficiently close to the world line that there exists a nonempty

intersection between N (z) and ~.

5.2.3 Electromagnetic field in retarded coordinates

When we differentiate the vector potential of Equation (444) we must keep in mind that a variation
in z induces a variation in z’, because the new points z + dz and 2’ + dz’ must also be linked by a
null geodesic. Taking this into account, we find that the gradient of the vector potential is given
by

VgAa(z) =
_T%Uagluﬂ’aﬁr+ ;Uaﬁ';guﬂ/ + ; (Uaﬁ';"/'uﬂ/u’w n Uag/aﬂ') 8gu+eVaﬁ'Uﬂ/8ﬁu+Ag%l($),
(445)
where the “tail integral” is defined by
. w T<
A@) = [ VoVl 2 dr e [ V3G (o2 dr

T< — 00

= e/ VG iau(x, z)ut dr. (446)

The second form of the definition, in which we integrate the gradient of the retarded Green’s
function from 7 = —co to 7 = u~ = u— 0" to avoid the singular behaviour of the retarded Green’s
function at o = 0, is equivalent to the first form.

We shall now expand F,3 = VoAg — VgA, in powers of r, and express the result in terms of
the retarded coordinates (u,r, Q%) introduced in Section 3.3. It will be convenient to decompose
the electromagnetic field in the tetrad (eg,e?) that is obtained by parallel transport of (u®,e2")
on the null geodesic that links x to ' = z(u); this construction is detailed in Section 3.3. Note
that throughout this section we set wq, = 0, where wgp is the rotation tensor defined by Equa-
tion (138): The tetrad vectors ef;/ are taken to be Fermi-Walker transported on . We recall
from Equation (141) that the parallel propagator can be expressed as go‘ol = uo‘/eg + eg/eg. The
expansion relies on Equation (166) for d,u, Equation (168) for d,r, and we shall need

/ / 1
B = 9%, |uar + —r? (Roo + 2R, 2% + RabQ“Qb) Ugr + O(r?’) , (447)

Uoy
pr 12
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which follows from Equation (323) and the relation ¢ = —r(u® + Q%2") first encountered in
Equation (144). We shall also need the expansions

’ ]_ ’ / ].
Uag/;guﬁ = _irgaagﬁﬂ |:Ro/0ﬁ/0 + Ro/(][-}’cﬂc _ 5 (Rﬁ’O + RQ/CQC) Uqr + O(T):| (448)

and
'’ ’ ’ ! ]_ ]-
Uaﬁ’;—y/uﬁ u” + Uaﬁ/a'@ = gaa |:ao/ -+ §T'Ra/0b09b - 67" (ROO + RObe) Uq + O(T’z):| (449)
that follow from Equations (323, 324, 325). And finally, we shall need

/ 1 1
Vagru? = —§gaa [Razo - éRua/ +0(r)|, (450)

a relation that was first established in Equation (327).
Collecting all these results gives

Foo(u,r, Q%) = Fag(x)eg‘(x)eg(a:)
1 1
= T%Qa = ; (a0 = 20 + 3R — ze (5Raonf” + Ranoe ')
1 1 1 y
+35¢ (5R00 + RpeQ°Q° + R) Q, + 3efa0 — 6eRabe + EFR L O®),  (451)

Fup(u,7,Q%) = Fap(a)el (z)ey (x)

e 1
- ; (aaQb - Qaab) + 56 (RaObc - RbOac + RaOcOQb - Qa}zbOcO) Q
1 .
~ 3¢ (Rao — QuRio) + Fii + O(r), (452)
where o o
Figl = Fil (a)eg ', Fil = Fi2 (2))ed e} (453)

are the frame components of the tail integral; this is obtained from Equation (446) evaluated at

'

.
Fii,(2') = 26/ Vie Gipnpa’, z)u dr. (454)
—00

It should be emphasized that in Equations (451) and (452), all frame components are evaluated at
the retarded point 2’ = z(u) associated with z; for example, a, = aq(u) = a e . It is clear from
these equations that the electromagnetic field F5(x) is singular on the world line.

5.2.4 Electromagnetic field in Fermi normal coordinates

We now wish to express the electromagnetic field in the Fermi normal coordinates of Section 3.2;
as before those will be denoted (¢, s,w®). The translation will be carried out as in Section 5.1.4,
and we will decompose the field in the tetrad (5, e2) that is obtained by parallel transport of
(u®, e%) on the spacelike geodesic that links  to the simultaneous point T = z(t).

Our first task is to decompose F,z(x) in the tetrad (eg,é2), thereby defining F,o = Fagég‘ég

and F,, = F,ped eb For this purpose we use Equations (224, 225) and (451, 452) to obtain

_ 1
Fo=—=Q, — € (aa — abeQa) + §eabeaa +
T

1 1
*EC-L()QG‘ — §el%aobogb + *eRbOC()QchQa
r2 6 3

2
1 1 1 1 _
+ geRabOCQbQC +5¢ (5Ro0 + Rpe2Q° + R) Q, + € Ha0 — 6eRabe + Fil L o)
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and

_ 1

. . c 1 rtai
Fop = 56 (Qaab - aaQb) + e (RaObc - RbOac) Q° — 56 (RaOQb - Qa}%bo) + F(Eb ! + O(T)a

1
2
where all frame components are still evaluated at z’, except for

Figl = Fil(z)equ”,  Fi = Fl(2)edey),

which are evaluated at Z.

We must still translate these results into the Fermi normal coordinates (t, s,w®). For this we
involve Equations (221, 222, 223), and we recycle some computations that were first carried out in
Section 5.1.4. After some algebra, we arrive at

Fao(t,5,0") = Fap(2)e; (2)e) (z)
e e ( b b Zea
2 a

3 3 b\ 2 .
—Wa — aq + apw wa) + —eaqpw a, + —e (abw ) Wq + —eagwg + 3

s 4 8 8

2 1 1
- geRGObowb - geRbOCowbwcwa + ¢ (5Ro0 + Rpew’w® + R)w

1 1 _
+ geRao - éeRabwb + EBl L O(s),

Fup(t,s,w”) = Fap(2)eS ()€, (z)

(455)

1 1 1
= 3¢ (Waly — dawp) + 5 (Raobe = Roac) 0 = 5€ (Raowy — waltyo) + I Fap' + O(s),
(456)

where all frame components are now evaluated at & = z(t); for example, a, = a,4(t) = aaef .
Our next task is to compute the averages of F,o and F,;, over S(t, s), a two-surface of constant
t and s. These are defined by

_ 1 _ _ 1 _
(Fao) (t,s) = —% Foo(t,s,w)dA, (Fap) (t,5) = = Fop(t, s,w®) dA, (457)
S(t,s) A S(t,s)

where dA is the element of surface area on S(t,s), and A = ¢ dA. Using the methods developed
in Section 5.1.4, we find

_ 2 2 1
(Fop) = _faa + 5¢ia + geRa + Fi + O(s), (458)

(Fap) = Ft‘“l+0 (s)- (459)

The averaged field is singular on the world line, but we nevertheless take the formal limit s — 0 of
the expressions displayed in Equations (458) and (459). In the limit the tetrad (&f, e7) becomes
(u®,e2), and we can easily reconstruct the field at z from its frame components. We thus obtain

’ra

<F:> = lim

s—0

4e 2.5 1 5 5 il
(_35> uzag + 2eus (95]"7 + ug]u@> <3a’Y + gR"Ygu ) F;% , (460)
where the tail term can be copied from Equation (454),

. t7
F‘;%ﬂ(f) = 26/ ViaGig, (7, 2)ut dr. (461)

The tensors appearing in Equation (460) all refer to Z = z(t), which now stands for an arbitrary
point on the world line ~.
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5.2.5 Singular and radiative fields

The singular vector potential

A§(z) = e/ G (z, z)ut dr (462)

is the (unphysical) solution to Equations (441) and (442) that is obtained by adopting the singular
Green’s function of Equation (335) instead of the retarded Green’s function. We will see that
the singular field Fsﬁ reproduces the singular behaviour of the retarded solution, and that the
difference, F§ =F.5— Fgﬁ, is smooth on the world line.

To evaluate the integral of Equation (462) we assume once more that z is sufficiently close
to v that the world line traverses N'(x) (refer back to Figure 9). As before we let 7. and 7~ be
the values of the proper-time parameter at which ~ enters and leaves N (z), respectively. Then
Equation (462) becomes

T< > 0
A§(x) = e/ Gg(z, 2)utdr +e | G (z,2)ut dr + e/ G, (@, 2)ut dr.
—00 >

T<

The first integration vanishes because z is then in the chronological future of z(7), and G}, (z, z) =
0 by Equation (338). Similarly, the third integration vanishes because x is then in the chronological
past of z(7). For the second integration, x is the normal convex neighbourhood of z(7), the singular
Green'’s function can be expressed in the Hadamard form of Equation (344), and we have

7>
/ Gg (@, 2)ut dr =
T<

T> >

1 /™ 1 1
*/ U@, a3 (o) dr + 5 / Uz, 2)utd_(0) d7 — / Ve, 2)ut6(o) dr.

2
< < <

To evaluate these we let 2’ = z(u) and 2’/ = 2(v) be the retarded and advanced points associated
with z, respectively. To perform the first integration we change variables from 7 to o, noticing
that o increases as z(7) passes through a’; the integral evaluates to U%,u? /r. We do the same for
the second integration, but we notice now that o decreases as z(7) passes through x”; the integral
evaluates to U ”‘ﬁ,,uﬁ”/ Tadv, Where roqy = —aauuo‘” is the advanced distance between = and the
world line. The third integration is restricted to the interval u < 7 < v by the step function, and
we obtain the expression

/ " 1 v
A (z) = % O‘ﬁ/uﬁ + o‘ﬁnu’g - fe/V‘;(x,z)u“ dr (463)

27"adv 2

for the singular vector potential.
Differentiation of Equation (463) yields

e , 17 6 4
Vsda(@) = 5 5Uas” Opr = Uapr” Oprace + 5 Unyip”

«
2radv2

’ ’ ’ &
(Uaﬁ/;’y'uﬂ ’U,FY —|— Uaﬁlaﬁ ) 8BU +

2"ﬂadv
"o % 1 ’
(Uaﬁ”;'y"uﬁ ’U/’Y —+ Uaﬁuaﬁ ) 8ﬁ’U =+ ieVaﬁluﬁ aﬁu

e
2r
e

+ Uag//;guﬁ”

+

2raudv

1 " 1 v
- ieVaﬁuuﬂ Ogv — 56/ VaVau(z, z)ut dr, (464)

and we would like to express this as an expansion in powers of r. For this we will rely on results
already established in Section 5.2.3, as well as additional expansions that will involve the advanced
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point x”. We recall that a relation between retarded and advanced times was worked out in
Equation (229), that an expression for the advanced distance was displayed in Equation (230), and
that Equations (231) and (232) give expansions for ,v and 9474y, respectively.

To derive an expansion for Uaguuﬁu we follow the general method of Section 3.4.4 and introduce
the functions Un(7) = Uapu(z, 2)u”. We have that

" - 1 .
Uaprtt? = Uy (v) = Ug(u) + Uy (W) N + an(u)A’Q +0 (A%,

where overdots indicate differentiation with respect to 7, and A = v — u. The leading term
Ua(u) = Uypu? was worked out in Equation (447), and the derivatives of U, (7) are given by

.. ’ ’ ’ ’ 1 1
Ua(u) = Uaﬁl;,yluﬁ uﬂ’ + Uaglaﬂ = gaa |:aa/ + §TRa/0b09b — 6’)‘ (Roo + RObe) Un! + O(TQ):|
and

[e3%

.. o st o ro ’ / 1
Ua(u> = Uaﬁl;,\//aluﬁ uwY U/(s + Uaﬂ/;"// (Qaﬁ Y + uﬁ a” ) + Uaﬂ’aﬂ = gOC da, + gROOua/ =+ O(’I"):| N

according to Equations (449) and (325). Combining these results together with Equation (229) for
A gives

Uag//uﬁn = ga(; |:’LLO/ + 2r (]. - rabe) Ao + 2T2(ia/ + 7‘2Ra/0boﬂb
1
+ Eﬂ (Roo — 2R0aQ" + Rop Q) upr + O(r®) |, (465)

which should be compared with Equation (447). It should be emphasized that in Equation (465)
and all equations below, all frame components are evaluated at the retarded point z’, and not at
the advanced point. The preceding computation gives us also an expansion for

Uaprr? 0" + Ungra® = Uy (v) = Ua(u) + Ua(w) N + O(A?),

which becomes

/

17 " 1" ]_ ].
Uapripl? 07 + Uapra’ = g% |aor + 2raar + iTRa’ObOQb + 5" (Roo — Rop") uar + O(r?) |,
(466)

and which should be compared with Equation (449).

We proceed similarly to derive an expansion for Uagu;guﬁ”. Here we introduce the functions
Uap(T) = Upnpput and express Uppr.gu’ as Ung(v) = Uag(u) + Uap(u)X + O(A?). The leading
term Uag(u) = Uyprpu® was computed in Equation (448), and

. ’ ’ ’ ]_ ’ 4 ].
Uaﬁ(u) = Uaﬁ,;ﬂ’Y/uﬁ u” + Uaﬁ/;ﬂa,@ = §gaagﬁﬁ Ro/Oﬁ/O - g’LLa/Rg/O + 0(7’):|

follows from Equation (324). Combining these results together with Equation (229) for A’ gives

11 1 ’ ’ ].
Uaﬁ”;ﬁuﬁ = 57"9&@955 Raropro — Raroprof2° — 3 (Rgro — Rpre§2°) uar + O(T)} ) (467)
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and this should be compared with Equation (448). The last expansion we shall need is

1" 1 ’ 1
Vagrnu? = —igaa Ry — éRua/ +0(r)|, (468)

which follows at once from Equation (450).

It is now a straightforward (but still tedious) matter to substitute these expansions into Equa-
tion (464) to obtain the projections of the singular electromagnetic field F 3[3 = VQA% — VA3 in
the same tetrad (e, ey) that was employed in Section 5.2.3. This gives

F3y(u,m,Q%) = F§g(x)ed (x)eq (x)
P 1 1
- %Qa - ; (a0 — ap2°Q,) — S¢ia + geRbOCOQbQCQa - ze (5Ra0502” + Rapoc Q)
1 1
+33¢ (5R00 + Rpe2°Q° + R) Q, — 6eRabe +O(r), (469)

F3(u,m, Q) = Fig()eq (x)ey (x)

e 1 X
= ; (a‘aQb - Qaab) + 56 (RaObc - RbOac + RaOcOQb - QaRbOCO) QC

1
— 56 (RQOQb — QaRbO) + O(T)7 (470)

in which all frame components are evaluated at the retarded point z’. Comparison of these expres-
sions with Equations (451) and (452) reveals that the retarded and singular fields share the same
singularity structure.

The difference between the retarded field of Equations (451, 452) and the singular field of
Equations (469, 470) defines the radiative field Ffﬁ(x). Its tetrad components are

2 1 .
FR — geda + geRao + EB L O(r), (471)
FR = Flail L O(r), (472)

and we see that F 01?5 is a smooth tensor field on the world line. There is therefore no obstacle
Ctl Oé,

in evaluating the radiative field directly at « = 2/, where the tetrad (e, e$) becomes (u® ,e2 ).
Reconstructing the field at 2’ from its frame components, we obtain

2. 1 . o .
FYg(2') = 2euor (9g1, + upuy) (3@7 - §R75,u5 ) o (473)
where the tail term can be copied from Equation (454),
Fi5(a') = 26/ Vie Gipnpa’, z)ut dr. (474)

The tensors appearing in Equation (473) all refer to the retarded point 2’ = z(u), which now
stands for an arbitrary point on the world line ~.

5.2.6 Equations of motion

The retarded field F, 3 of a point electric charge is singular on the world line, and this behaviour
makes it difficult to understand how the field is supposed to act on the particle and exert a force.
The field’s singularity structure was analyzed in Sections 5.2.3 and 5.2.4, and in Section 5.2.5 it
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was shown to originate from the singular field FSB; the radiative field F&, = F,5 — FSﬁ was then
shown to be smooth on the world line.

To make sense of the retarded field’s action on the particle we follow the discussion of Sec-
tion 5.1.6 and temporarily picture the electric charge as a spherical hollow shell; the shell’s radius is
so in Fermi normal coordinates, and it is independent of the angles contained in the unit vector w®.
The net force acting at proper time 7 on this shell is proportional to the average of F,z(T, so,w®)
over the shell’s surface. This was worked out at the end of Section 5.2.4, and ignoring terms that
disappear in the limit sy — 0, we obtain

2 1 )
e <F#l,> u’ = 7(5777,)0,# + 62 (guu —+ uuu,,) (Sal’ + SRVAU)\) + eﬂiilluu’ (475)
where 002
e
om= lim — 476
"= 050 3sg (476)

is formally a divergent quantity and
eFu” = Qezu”/ ViuG iy (2(1), 2(7")) N dr! (477)
—0o0

is the tail part of the force; all tensors in Equation (475) are evaluated at an arbitrary point z(7)
on the world line.

Substituting Equations (475) and (477) into Equation (439) gives rise to the equations of motion
for the electric charge

-
(m + dm)a* = e (6", 4 utu,)) (gd” + ;R”)\u)‘> + 262u,,/ V[“G:}/\, (2(7), (7)) u dr’, (478)
— 00
with m denoting the (also formally divergent) bare mass of the particle. We see that m and dm
combine in Equation (478) to form the particle’s observed mass mopns, which is finite and gives
a true measure of the particle’s inertia. All diverging quantities have thus disappeared into the
procedure of mass renormalization.
Apart from the term proportional to dm, the averaged force of Equation (475) has exactly the
same form as the force that arises from the radiative field of Equation (473), which we express as

2 1 .
eFfl,u" =€ (g + uyuy) (3&” + 3R”,\u)‘> + eF;ﬁﬂu”. (479)
The force acting on the point particle can therefore be thought of as originating from the (smooth)
radiative field, while the singular field simply contributes to the particle’s inertia. After mass
renormalization, Equation (478) is equivalent to the statement

ma, = eF}};j(z)u”, (480)

where we have dropped the superfluous label “obs” on the particle’s observed mass.

For the final expression of the equations of motion we follow the discussion of Section 5.1.6 and
allow an external force fl., to act on the particle, and we replace, on the right-hand side of the
equations, the acceleration vector by f..,/m. This produces

Dut 2 DfY 1 T y ,
Ty (0%, + utu,) (?)mg:ﬁ + 3RV>\U)\) + 2€2UV/ V[“GJF ])\/ (2(7), 2(r")) u* dr,

m dr ext

(481)
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in which m denotes the observed inertial mass of the electric charge and all tensors are evaluated
at z(7), the current position of the particle on the world line; the primed indices in the tail integral
refer to the point z(7'), which represents a prior position. We recall that the integration must be
cut short at 7 = 7= = 7 — 0T to avoid the singular behaviour of the retarded Green’s function
at coincidence; this procedure was justified at the beginning of Section 5.2.3. Equation (481)
was first derived (without the Ricci-tensor term) by Bryce S. DeWitt and Robert W. Brehme in
1960 [24], and then corrected by J.M. Hobbs in 1968 [29]. An alternative derivation was produced
by Theodore C. Quinn and Robert M. Wald in 1997 [19]. In a subsequent publication [50], Quinn
and Wald proved that the total work done by the electromagnetic self-force matches the energy
radiated away by the particle.

5.3 Motion of a point mass
5.3.1 Dynamics of a point mass

In this section we consider the motion of a point particle of mass m subjected to its own gravita-
tional field. The particle moves on a world line « in a curved spacetime whose background metric
Jag is assumed to be a vacuum solution to the Einstein field equations. We shall suppose that m
is small, so that the perturbation h,s created by the particle can also be considered to be small;
it will obey a linear wave equation in the background spacetime. This linearization of the field
equations will allow us to fit the problem of determining the motion of a point mass within the
framework developed in Sections 5.1 and 5.2, and we shall obtain the equations of motion by fol-
lowing the same general line of reasoning. We shall find that 7 is not a geodesic of the background
spacetime because h,g acts on the particle and induces an acceleration of order m; the motion is
geodesic in the test-mass limit only.

Our discussion in this first section is largely formal: As in Sections 5.1.1 and 5.2.1 we insert the
point particle in the background spacetime and ignore the fact that the field it produces is singular
on the world line. To make sense of the formal equations of motion will be our goal in the following
Sections 5.3.2, 5.3.3, 5.3.4, 5.3.5, 5.3.6, and 5.3.7. The problem of determining the motion of a
small mass in a background spacetime will be reconsidered in Section 5.4 from a different and more
satisfying premise: There the small body will be modeled as a black hole instead of as a point
particle, and the singular behaviour of the perturbation will automatically be eliminated.

Let a point particle of mass m move on a world line v in a curved spacetime with metric
gas- This is the total metric of the perturbed spacetime, and it depends on m as well as all other
relevant parameters. At a later stage of the discussion the total metric will be broken down into a
“background” part gos that is independent of m, and a “perturbation” part h,p that is proportional
to m. The world line is described by relations z#(\) in which X is an arbitrary parameter — this
will later be identified with proper time 7 in the background spacetime. In this and the following
sections we will use sans-serif symbols to denote tensors that refer to the perturbed spacetime;
tensors in the background spacetime will be denoted, as usual, by italic symbols.

The particle’s action functional is

Sparticlc = 7777,/ V 7gpuz.#éu d)‘a (482)
Y

where Z# = dz* /d) is tangent to the world line and the metric is evaluated at z. We assume that
the particle provides the only source of matter in the spacetime — an explanation will be provided
at the end of this section — so that the Einstein field equations take the form of

G = 8n TP, (483)
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where G*? is the Einstein tensor constructed from ga8, and

TP (z) =

feY el S LV
m/ 8u(r. )y (w, 2)22 04(z, 2) dX (484)
vy

V _gu,l/é;'u'éu

is the particle’s stress-energy tensor, obtained by functional differentiation of Sparticle with respect
to gag(x); the parallel propagators appear naturally by expressing g,,, as g 8 ugag

On a formal level the metric gop is obtained by solving the Einstein field equations, and the
world line is determined by solving the equations of energy-momentum conservation, which follow
from the field equations. From Equations (81, 260, 484) we obtain

d gzt
V/J’Taﬁzm/* — 0a(z,2) dA,
N AN\ /=g Er Y

and additional manipulations reduce this to

VﬁT“ﬁ = m/

DZ — ki) Gu(x, 2) d),
\/— ng“z”

where DZ¥/d) is the covariant acceleration and k is a scalar field on the world line. Energy-
momentum conservation therefore produces the geodesic equation

Dz#

=k, (485)

and
1

k= —guitzEY 486
Neresd nY o (486)
measures the failure of A to be an affine parameter on the geodesic +.
At this stage we begin treating m as a formal expansion parameter, and we write

gapB = Jap + haﬂ + O(m2)7 (487)

with gop denoting the m — 0 limit of the total metric gog, and hog = O(m) the first-order
correction. We shall refer to gog as the “metric of the background spacetime” and to h,g as the
“perturbation” produced by the particle. We similarly write

G*7lg] = G*P[g] + H*[g; h] + O(m?) (488)

for the Einstein tensor, and
T =T + O(m?) (489)

for the particle’s stress-energy tensor. The leading term 7% (z) describes the stress-energy tensor
of a test particle of mass m that moves on a world line v in a background spacetime with metric
gap- If we choose A to be proper time 7 as measured in this spacetime, then Equation (484) implies

Taﬂ(m> = m/gap,(x7Z)gﬁu($7z)uuuyé4(x7Z) dTv (490)
il

where u#(7) = dz*/dr is the particle’s four-velocity.

We have already stated that the particle is the only source of matter in the spacetime, and the
metric g, must therefore be a solution to the vacuum field equations: G*8[g] = 0. Equations (483,
488, (489) then imply H*?[g; h] = 877", in which both sides of the equation are of order m. To
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simplify the expression of the first-order correction to the Einstein tensor we introduce the trace-
reversed gravitational potentials

1
YaB = hoeﬂ - 5 (gwsh’yé) 9aps (491)
and we impose the Lorenz gauge condition
vy =0. (492)

Here and below it is understood that indices are lowered and raised with the background metric and
its inverse, respectively, and that covariant differentiation refers to a connection that is compatible
with go3. We then have H*? = —1 (0" + 2R,Ya55775), and Equation (483) reduces to

07?4+ 2R = —167T7, (493)

where 0 = g*#V, V4 is the wave operator and 7°# is defined by Equation (490). We have here a
linear wave equation for the potentials 7,3, and this equation can be placed on an equal footing
with Equation (385) for the potential ® associated with a point scalar charge, and Equation (441)
for the vector potential A% associated with a point electric charge.

The equations of motion for the point mass are obtained by substituting the expansion of
Equation (487) into Equations (485) and (486). The perturbed connection is easily computed to
be I'Y + %(ho‘ﬁ;7 +h%,.5 = hg, '), and this leads to

Dzt Dut
dr ~ dr

1 .
+ D) (huu;)\ + hu)\;z/ - hv):u) u’ut + O(m2)7

having once more selected proper time 7 (as measured in the background spacetime) as the pa-
rameter on the world line. On the other hand, Equation (486) gives

1
k = fih”;pu”u)‘up — hyau¥a® + O(m2),

where a* = Du?/dr is the particle’s acceleration vector. Since it is clear that the acceleration will
be of order m, the second term can be discarded and we obtain
Dut 1

dr = _5 (hul/;)\ + hu)\;u - hu}iu + Uuhu)\;pup) u’u + O(m2)

Keeping the error term implicit, we shall express this in the equivalent form

Dut 1
ar 2 (9" +u"u”) (2hux;p — hap) utu?, (494)

which emphasizes the fact that the acceleration is orthogonal to the four-velocity.

It should be clear that Equation (494) is valid only in a formal sense, because the potentials
obtained from Equations (493) diverge on the world line. The nonlinearity of the Einstein field
equations makes this problem even worse here than for the scalar and electromagnetic cases,
because the singular behaviour of the perturbation might render meaningless a formal expansion
of gop in powers of m. Ignoring this issue for the time being (we shall return to it in Section 5.4), we
will proceed as in Sections 5.1 and 5.2 and attempt, with a careful analysis of the field’s singularity
structure, to make sense of these equations.

To conclude this section I should explain why it is desirable to restrict our discussion to space-
times that contain no matter except for the point particle. Suppose, in contradiction with this
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assumption, that the background spacetime contains a distribution of matter around which the
particle is moving. (The corresponding vacuum situation has the particle moving around a black
hole. Notice that we are still assuming that the particle moves in a region of spacetime in which
there is no matter; the issue is whether we can allow for a distribution of matter somewhere
else.) Suppose also that the matter distribution is described by a collection of matter fields V.
Then the field equations satisfied by the matter have the schematic form E[U;g] = 0, and the
metric is determined by the Einstein field equations Glg] = 87 M[¥;¢g], in which M[¥;g] stands
for the matter’s stress-energy tensor. We now insert the point particle in the spacetime, and
recognize that this displaces the background solution (¥, g) to a new solution (¥ + 6%, g + dg).
The perturbations are determined by the coupled set of equations E[¥ 4 0¥;¢g + dg] = 0 and
Glg + dg] =8 M|V + 6¥; g + dg] + 87T '[g]. After linearization these take the form of

By -6U+E, 6g=0, Gy-6g=8m(My 6U+M, 5g+T),

where Ey, E,, Mg, and M, are suitable differential operators acting on the perturbations. This
is a coupled set of partial differential equations for the perturbations 0¥ and §g. These equations
are linear, but they are much more difficult to deal with than the single equation for dg that was
obtained in the vacuum case. And although it is still possible to solve the coupled set of equations
via a Green’s function technique, the degree of difficulty is such that we will not attempt this here.
We shall, therefore, continue to restrict our attention to the case of a point particle moving in a
vacuum (globally Ricci-flat) background spacetime.

5.3.2 Retarded potentials near the world line

The retarded solution to Equation (493) is y*?(z) = 4fG+a€/5, (2,2")T7'% (2')/—g d*z’, where
G fi, s (x, ") is the retarded Green’s function introduced in Section 4.5. After substitution of the
stress-energy tensor of Equation (490) we obtain

B (x) = 4m/ G_,_O‘lﬁw(x, z)utu” dr, (495)
2!

in which z#(7) gives the description of the world line v and u* = dz*/dr. Because the retarded
Green’s function is defined globally in the entire background spacetime, Equation (495) describes
the gravitational perturbation created by the particle at any point x in that spacetime.

For a more concrete expression we must take x to be in a neighbourhood of the world line.
The following manipulations follow closely those performed in Section 5.1.2 for the case of a scalar
charge, and in Section 5.2.2 for the case of an electric charge. Because these manipulations are by
now familiar, it will be sufficient here to present only the main steps. There are two important
simplifications that occur in the case of a massive particle. First, for the purposes of computing
2P (z) to first order in m, it is sufficient to take the world line to be a geodesic of the background
spacetime: The deviations from geodesic motion that we are in the process of calculating are
themselves of order m and would affect v*#(x) at order m? only. We shall therefore be allowed to
set

a* =0=a" (496)

in our computations. Second, because we take g, to be a solution to the vacuum field equations,
we are also allowed to set
R, (2) =0 (497)

in our computations.
With the understanding that « is close to the world line (refer back to Figure 9), we substitute
the Hadamard construction of Equation (352) into Equation (495) and integrate over the portion
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of v that is contained in N (x). The result is

B () = U ,6,(20 2 )u? u +4m/V“ (x, z)utu” dT—|—4m/ G (x, 2)utu” dr, (498)

+;w

in which primed indices refer to the retarded point @’ = z(u) associated with z, r = oou® is the
retarded distance from z’ to x, and 7< is the proper time at which ~ enters A/(z) from the past.

In the following Sections 5.3.3, 5.3.4, 5.3.5, 5.3.6, and 5.3.7, we shall refer to vy,g(x) as the
gravitational potentials at x produced by a particle of mass m moving on the world line ~, and to
Yapiy(x) as the gravitational field at . To compute this is our next task.

5.3.3 Gravitational field in retarded coordinates

Keeping in mind that 2’ and x are related by o(z,2’) = 0, a straightforward computation reveals
that the covariant derivatives of the gravitational potentials are given by

4m ’ ’ 4m ’ ’ 4m ’ ’ ’
Yoy (T) = *TUaﬂa/ﬂ’“a uw? Oyr + —=Uagarpryu™ u” + —=Uagargryu® v w7 dyu
+4AmVyga gru® "uf 6 u+ yg‘lﬂﬂv( ), (499)

where the “tail integral” is defined by

X u T<
’y&aﬁﬂv(z) = 4m/ Vo Vapu (@, 2)utu” dr + 4m/ Vo Giapuw(z, z)utu” dr
T< — 00

= 4m/ Vo Giapuw (@, 2)uru” dr. (500)

The second form of the definition, in which the integration is cut short at 7 = u~ = u — 0% to
avoid the singular behaviour of the retarded Green’s function at ¢ = 0, is equivalent to the first
form.

We wish to express Yap.y(z) in the retarded coordinates of Section 3.3, as an expansion in
powers of r. For this purpose we decompose the field in the tetrad (ef,ed) that is obtained by
parallel transport of (u®,e2") on the null geodesic that links 2 to 2’; this construction is detailed
in Section 3.3. Note that throughout this section we set wqp = 0, Where wap 18 the rotation tensor
defined by Equation (138): The tetrad vectors e2 are taken to be parallel transported on ~. We
recall from Equation (141) that the parallel propagator can be expressed as ga(; = u“/eg + eg"eg.
The expansion relies on Equation (166) for d,u and Equation (168) for d,r, both specialized to
the case of geodesic motio, a, = 0. We shall also need

Uaﬁa’ﬁ’ua uﬁ = ga(agﬁﬁ) [ua’uﬁ’ + O(TB)] ) (501)

which follows from Equation (358),

Uaparpu® u” = g%975)9% [ (Raroyo + RaroyaQ?) ugr + O(2)] (502)
Uaﬂa’ﬁ’w’ua/uﬁluv/ = ga(/agﬁﬁl) [TRQ'OdOQduﬁ’ + 0(72)} ) (503)
which follow from Equations (359) and (360), respectively, as well as the relation 0@ = —r(u® +

Q%) first encountered in Equation (144). And finally, we shall need

Vaﬁa’ﬁ’ualuﬁl = ga(/agﬁg) [Ro/Oﬁ’O +0O(r)], (504)
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which follows from Equation (362).

Making these substitutions in Equation (484) and projecting against various members of the
tetrad gives

Y000 (1, 7, Q%) = Yag (2)ef () (2)ed () = 2mRagpo2°Q° + 7535 + O(r), (505)
Y00 (1, 7, Q%) = Yapin (2)ef (2)ey (2)ed () = —4mRu0c0Q° + 760 + O(r), (506)
Yabo (U, 7, Q) = Yoy ()5 (2)ey (2)ed () = 4mRaopo + Vet + O(r), (507)
Yo0e (1, 7, %) = Yapin (2)ef (2)e] (x)e] ()

= —4m [ %2 + ;RaoonaQb> Q.+ éRCOonb - éRcaOanQb + 65 + O(r), (508)
Yobe (4,7, ) = Yapiy (2)ef (2)e) (x)ed ()

= 2m (Ryoco + Rp0ca? + Rpoao Q) + v + O(r), (509)
Yabe(t, 7, %) = Yo ()€l (2)e) (x)e] () = —4mRaopoQe + Ve + O(r), (510)

where, for example, Raop0(u) = Rary B/yeg’uv/ef "u¥ are frame components of the Riemann tensor
evaluated at ' = z(u). We have also introduced the frame components of the tail part of the
gravitational field, which are obtained from Equation (500) evaluated at 2’ instead of z; for ex-
ample, 7838 = u v ’yfj}%w,( 2’). We may note here that while ygo. is the only component of
the gravitational field that diverges when r — 0, the other components are nevertheless singular

because of their dependence on the unit vector %; the only exception is 40, which is smooth.

5.3.4 Gravitational field in Fermi normal coordinates

The translation of the results contained in Equations (505, 506, 507, 508, 509, 510) into the Fermi
normal coordinates of Section 3.2 proceeds as in Sections 5.1.4 and 5.2.4, but is simplified by the
fact that here the world line can be taken to be a geodesic. We may thus set a, = a9 = G, = 0 in
Equations (224) and (225) that relate the tetrad (g, %) to (ef,e), as well as in Equations (221,
222, 223) that relate the Fermi normal coordinates (¢, s,w®) to the retarded coordinates. We recall
that the Fermi normal coordinates refer to a point & = z(¢) on the world line that is linked to x
by a spacelike geodesic that intersects v orthogonally.

The translated results are

o0 (t, 5,0") = Yagy (2)EG (2)E) (x)e] () = 7530 + O(s), (511)
Fovo (£, 8,w") = Yap ()€ (2)E) (2)Eg () = —4mRpocow® + Tog + O(s), (512)
Fabo (L, 8, w?) = 7a5;7(x)ég(x)é§(x)ég(x) = 4mR,op0 + %bo + O(s), (513)
Fooe(t, 8,w") = Yagi ()€5 (2)Eg (2)E) (2)
1 1 1

—4m |:<82 - GRaObOWGWb) We + chObOW :| + V(t)glcl + O(S)’ (514)
Fove(t, 5, W) = Yapsn ()5 ()€} (2)& () = 2m (Rpoco + Roocaw?) + Foi + O(s),  (515)
Fabe(t, 8,w?) = Yapin ()85 (2)E) (2)€) () = —4mRaopowe + 7o + O(s), (516)

where all frame components are now evaluated at Z instead of z’.
It is then a simple matter to average these results over a two-surface of constant ¢ and s. Using
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the area element of Equation (404) and definitions analogous to those of Equation (405), we obtain

) =650 + O(s), (517)
) =650 + O(s), (518)
) = 4mRaop0 + 7550 + O(s), (519)
Yooe) = Toom + O(s), (520)
) = (521)
) = (522)

(@31
—
=]

2mRyoco + ’Y(t)blcl +O(s),
= Yebe 4+ O(s).

The averaged gravitational field is smooth in the limit s — 0, in which the tetrad (€§, €) coincides
with (u%,e?). Reconstructing the field at z from its frame components gives

<’75¢B;7> = —4m (u(@RB)S"yE + Rs55eu ) u’u + vf;‘ﬁ‘;, (523)

where the tail term can be copied from Equation (500),

-
'yt_all (7) 4m/ V5G 6 (T, 2)utu” dr. (524)

The tensors that appear in Equation (523) all refer to the simultaneous point Z = z(t), which can
now be treated as an arbitrary point on the world line ~.

5.3.5 Singular and radiative fields

The singular gravitational potentials
'yg‘ﬁ(x) = 4m/ Gso‘fu(az)u“u” dr (525)
vy

are solutions to the wave equation of Equation (493); the singular Green’s function was introduced
in Section 4.5.4. We will see that the singular field v5 ;- reproduces the singular behaviour of the
retarded solution near the world line, and that the difference, 755;7 =Ygy — 725;7, is smooth on
the world line.

To evaluate the integral of Equation (525) we take  to be close to the world line (see Figure 9),
and we invoke Equation (373) as well as the Hadamard construction of Equation (379). This gives

2m ’ 2m "
73P (z) = Uo‘ﬁ,(;,u7 u® + Uag,,(s/,lﬂ u?” 2m/Vaﬁ x, z)utu” dr, (526)
T Tadv
where primed indices refer to the retarded point a:’ = z(u), double-primed indices refer to the
advanced point 2" = z(v), and where r,qy = —o4ru®  is the advanced distance between x and the
world line.

Differentiation of Equation (526) yields

2m ’ ’ 2m " 7" 2m ’ ’
Vagiy (@) = =5 Uaparpru® v 051 — == Unparpru® 0’ yraay + —=Unparpriu® u”
r2 Tady r
2m 2m "o
+ —Uaga/gf AU W Oy + ——Ugparpru® u? +

Tadv Tadv

27)1 " " "
«
Uapar g™ u? u? 9,0

v
+ 2mVpgar g u® uP Oyu — 2mVugar gru® ub Oyv — Zm/VA,VQBW(x, z)utu” dr,(527)
u
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and we would like to express this as an expansion in powers of r. For this we will rely on results
already established in Section 5.3.3, as well as additional expansions that will involve the advanced
point z/. We recall that a relation between retarded and advanced times was worked out in
Equation (229), that an expression for the advanced distance was displayed in Equation (230), and
that Equations (231) and (232) give expansions for d,v and 0y7aqv, respectively; these results can
be simplified by setting a, = a9 = a@, = 0, which is appropriate in this computation.

To derive an expansion for Uygargru® u®” we follow the general method of Section 3.4.4 and
introduce the functions Uag(7) = Uapuw (¢, 2)u*u”. We have that

"

" . 1.
Uaparrpru® u’ = ap(v) = Uap(u) + Uaﬁ(u)A/ + §U‘15 (U)AIZ +0 (A/S) )

where overdots indicate differentiation with respect to 7 and A' = v — u. The leading term
Uap(t) = Upparpru® u? was worked out in Equation (501), and the derivatives of U,s(7) are
given by

Uas(u) = Uagarpiu® 0" = g0 [rRaroanf ugr + O(%)]

and

Uaﬁ(u) = Uaﬁa’ﬁ';yglua/uﬁluv/u‘s/ B (’)(T)’
according to Equations (503) and (360). Combining these results together with Equation (229) for
A gives

Uagarrpru® u = go‘(/agﬁg) [Uo/uﬁ’ + 2T2Ra’0dOQduﬁ/ + O(T3)] ) (528)

which should be compared with Equation (501). It should be emphasized that in Equation (528)
and all equations below, all frame components are evaluated at the retarded point z’, and not at
the advanced point. The preceding computation gives us also an expansion for

Uaganguwuu”‘/uﬁ”u'yu = Uag(u) + Uag(u)A’ + O(A?),
which becomes

Uagargriyru® W = ga(/agﬁﬁ) [rRar0a0Q%up + O(r?)] (529)

and which is identical to Equation (503).

We proceed similarly to obtain an expansion for U,gq 5//;.yu“”uﬁ”. Here we introduce the func-
tions Uppy (1) = Unpuvmu’u” and express Ungargrau® 1P as Unpy (V) = Unpy (0) + Unpgey (0) N +
O(A?). The leading term Upyg.(u) = Usporpryu® uf was computed in Equation (502), and

Uapy (1) = Uaparpriyu® u” u'" = g%,9% 97, [Raroroup + O(r)]
follows from Equation (359). Combining these results together with Equation (229) for A’ gives
Uagarpryt® 6" = g%,9"5 9%, [r (Raroyo = RaroyraQ®) ugr + O()] (530)

and this should be compared with Equation (502). The last expansion we shall need is

" 1"

Vaﬁa”ﬁ”ua ’U,B — ga(/agﬁﬁ) [RQ’O,@’O + O(’I")] s (531)

which is identical to Equation (504).
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We obtain the frame components of the singular gravitational field by substituting these ex-
pansions into Equation (527) and projecting against the tetrad (e, el). After some algebra we
arrive at

Yooo (u, 7, Q%) = 755;7(55)68(@65(95)@3(35) = 2mR,000"Q° + O(r), (532)
Voro (1,7, Q%) = 55, (2)ef (w)ep (w)ed () = —4mRpoe0 QL + O(r), (533)
Vapo (1,7, Q%) = 75 5. (2)el ()€ (w)ed () = O(r), (534)
Voo, 7, %) = 355, (2)ef (w)e] (x)e] (x)

= —4m [(:2 + ;RaObOQaQb> Qe+ ERCOonb - chaOanQb +0O(r), (535)
Yope (s, Q%) = 75 5. ()€ (2)e}) (2)el (z) = 2m (RpocaQ? + Ryoao Q) + O(r), (536)
Voo, Q%) = 355, (0)ed (w)ep (w)el (x) = —4mRaop02e + O(r), (537)

in which all frame components are evaluated at the retarded point z’. Comparison of these ex-
pressions with Equations (505, 506, 507, 508, 509, 510) reveals identical singularity structures for
the retarded and singular gravitational fields.

The difference between the retarded field of Equations (505, 506, 507, 508, 509, 510) and the
singular field of Equations (532, 533, 534, 535, 536, 537) defines the radiative gravitational field
755;7. Its tetrad components are

Vooo = 5% + O(r), (538)
70170 =550 + O(r), (539)
Yabo = 4mRaovo + Vebo + O(r), (540)
V00e = Vode + O(r), (541)
Yooe = 2mReoco + Voan 4+ O(r), (542)
Yabe = Vipe + O(r), (543)

and we see that 755;7 is smooth in the limit » — 0. We may therefore evaluate the radiative field

directly at 2 = 2/, where the tetrad (g, e?) coincides with (u®,e2"). After reconstructing the field
at o’ from its frame components, we obtain

’}/S/B/ﬂ,/(wl) = —4m (u(a/Rﬁ/)él,yle/ + Ra/&B/E/’U,,Y )u u* + ’}/‘tﬁ%/vz, (544)

where the tail term can be copied from Equation (500),

'ygﬁ% (@) = 4m/ Vo Giapgw (@, z)utu? dr. (545)

The tensors that appear in Equation (545) all refer to the retarded point 2’ = z(u), which can now
be treated as an arbitrary point on the world line 7.

5.3.6 Equations of motion

The retarded gravitational field .3y of a point particle is singular on the world line, and this
behaviour makes it difficult to understand how the field is supposed to act on the particle and
influence its motion. The field’s singularity structure was analyzed i 1n Sections 5.3.3 and 5.3.4, and
in Section 5.3.5 it was shown to originate from the singular field *yaﬁw, the radiative field Vaﬁ;«/
was then shown to be smooth on the world line.
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To make sense of the retarded field’s action on the particle we can follow the discussions of
Section 5.1.6 and 5.2.6 and postulate that the self gravitational field of the point particle is either
(Yuv;n), as worked out in Equation (523), or 751,;/\7 as worked out in Equation (544). These
regularized fields are both given by

Yon = —=4m (u(u Ry pre + Rpupvetn) uPus + i (546)

and -
'yfﬁ,‘& = 4m/ VG (2(7),2(7)) ' vt dr (547)

— 00

in which all tensors are now evaluated at an arbitrary point z(7) on the world line ~.
The actual gravitational perturbation hog is obtained by inverting Equation (491), which leads
t0 Ppwin = Yy — %gwfypp;x Substituting Equation (546) yields
hiek = —4m (u(uRuypre + Rpupueun) w’us + b, (548)

where the tail term is given by the trace-reversed counterpart to Equation (547):

i T 1 ’ ’
h:taull)\ = 4m/ VA <G+/ﬂ/u/u’ - 2g;u/G+pp“/V/) (Z(T), Z(T’)) ut u” dT/. (549)

When this regularized field is substituted into Equation (494), we find that the terms that depend
on the Riemann tensor cancel out, and we are left with
Du# 1

=5 (g™ + utu”) (thﬁfi) — hgfj;},) uuP. (550)
-

We see that only the tail term is involved in the final form of the equations of motion. The tail
integral of Equation (549) involves the current position z(7) of the particle, at which all tensors
with unprimed indices are evaluated, as well as all prior positions z(7’), at which all tensors with
primed indices are evaluated. The tail integral is cut short at 7/ = 7= = 7 — 0% to avoid the
singular behaviour of the retarded Green’s function at coincidence; this limiting procedure was
justified at the beginning of Section 5.3.3.

Equation (550) was first derived by Yasushi Mino, Misao Sasaki, and Takahiro Tanaka in

1997 [39]. (An incomplete treatment had been given previously by Morette-DeWitt and Ging [412].)
An alternative derivation was then produced, also in 1997, by Theodore C. Quinn and Robert M.
Wald [49]. These equations are now known as the MiSaTaQuWa equations of motion. It should

be noted that Equation (550) is formally equivalent to the statement that the point particle moves
on a geodesic in a spacetime with metric gog + hgﬁ, where hgﬁ is the radiative metric perturbation

obtained by trace-reversal of the potentials 'ygﬁ = Yag — 72[35 this perturbed metric is smooth
on the world line, and it is a solution to the vacuum field equations. This elegant interpretation
of the MiSaTaQuWa equations was proposed in 2002 by Steven Detweiler and Bernard F. Whit-
ing [23]. Quinn and Wald [50] have shown that under some conditions, the total work done by the
gravitational self-force is equal to the energy radiated (in gravitational waves) by the particle.

5.3.7 Gauge dependence of the equations of motion

The equations of motion derived in the preceding Section 5.3.6 refer to a specific choice of gauge
for the metric perturbation h,g produced by a point particle of mass m. We indeed recall that

back at Equation (492) we imposed the Lorenz gauge condition 'yaﬁ 5 = 0on the gravitational
potentials Yo5 = hag — 3(97°hqs)gas. By virtue of this condition we found that the potentials
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satisfy the wave equation of Equation (493) in a background spacetime with metric gog. The
hyperbolic nature of this equation allowed us to identify the retarded solution as the physically
relevant solution, and the equations of motion were obtained by removing the singular part of the
retarded field. It seems clear that the Lorenz condition is a most appropriate choice of gauge.

Once the equations of motion have been formulated, however, the freedom of performing a
gauge transformation (either away from the Lorenz gauge, or within the class of Lorenz gauges)
should be explored. A gauge transformation will affect the form of the equations of motion: These
must depend on the choice of coordinates, and there is no reason to expect Equation (550) to
be invariant under a gauge transformation. Our purpose in this section is to work out how the
equations of motion change under such a transformation. This issue was first examined by Barack
and Ori [8].

We introduce a coordinate transformation of the form

x* — x4+ €Y, (551)

where x® are the coordinates of the background spacetime, and £ is a vector field that we take
to be of order m. We assume that £ is smooth in a neighbourhood of the world line 7. The
coordinate transformation changes the background metric according to

9op = Gap — Easp — Epia + O(M?),

and this change can be interpreted as a gauge transformation of the metric perturbation created
by the moving particle:

haﬁ - hocﬁ - ga;ﬁ - gﬁ;ow (552)

This, in turn, produces a change in the particle’s acceleration,
at — a* + a¢]¥, (553)

where a* is the acceleration of Equation (550) and a[¢]* is the “gauge acceleration” generated by
the vector field £~.

To compute the gauge acceleration we substitute Equation (552) into Equation (494), and
we simplify the result by invoking Ricci’s identity, {x,p — Exipr = Rupwn&”, and the fact that
a’ = O(m). The final expression is

D2£u
dr?

alé]* = (6%, 4+ ut'uy,) ( + R”pru"f“u)‘> , (554)

where D?¢” /dr? = (£, ,ut),,u” is the second covariant derivative of £” in the direction of the world
line. The expression within the large brackets is familiar from the equation of geodesic deviation,
which states that this quantity vanishes if £* is a deviation vector between two neighbouring
geodesics. Equation (553), with a[¢]* given by Equation (554), is therefore a generalized version
of this statement.

5.4 Motion of a small black hole
5.4.1 Matched asymptotic expansions

The derivation of the MiSaTaQuWa equations of motion presented in Section 5.3 was framed within
the paradigm introduced in Sections 5.1 and 5.2 to describe the motion of a point scalar charge, and
a point electric charge, respectively. While this paradigm is well suited to fields that satisfy linear
wave equations, it is not the best conceptual starting point in the nonlinear context of general
relativity. The linearization of the Einstein field equations with respect to the small parameter m
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did allow us to use the same mathematical techniques as in Sections 5.1 and 5.2, but the validity of
the perturbative method must be critically examined when the gravitational potentials are allowed
to be singular. So while Equation (550) does indeed give the correct equations of motion when
m is small, its previous derivation leaves much to be desired. In this section I provide another
derivation that is entirely free of conceptual and technical pitfalls. Here the point mass will be
replaced by a nonrotating black hole, and the perturbation’s singular behaviour on the world line
will be replaced by a well-behaved metric at the event horizon. We will use the powerful technique
of matched asymptotic expansions [35, 31, 58, 19, 1, 20].

The problem presents itself with a clean separation of length scales, and the method relies
entirely on this. On the one hand we have the length scale associated with the small black hole,
which is set by its mass m. On the other hand we have the length scale associated with the
background spacetime in which the black hole moves, which is set by the radius of curvature R;
formally this is defined so that a typical component of the background spacetime’s Riemann tensor
is equal to 1/R? up to a numerical factor of order unity. We demand that m/R < 1. As before
we assume that the background spacetime contains no matter, so that its metric is a solution to
the Einstein field equations in vacuum.

For example, suppose that our small black hole of mass m is on an orbit of radius b around
another black hole of mass M. Then R ~ by/b/M > b and we take m to be much smaller than
the orbital separation. Notice that the time scale over which the background geometry changes
is of the order of the orbital period by/b/M ~ R, so that this does not constitute a separate
scale. Similarly, the inhomogeneity scale — the length scale over which the Riemann tensor of
the background spacetime changes — is of order b ~ Ry/M/b < R and also does not constitute
an independent scale. (In this discussion we have considered b/M to be of order unity, so as to
represent a strong-field, fast-motion situation.)

Figure 10: A black hole, represented by the black disk, is immersed in a background spacetime. The
internal zone extends from r =0 to r = r; K R, while the external zone extends fromr =r. > m
tor = co. When m < R there exists a buffer zone that extends from r = re to r = r;. In the
buffer zone m/r and r/R are both small.

Let r be a meaningful measure of distance from the small black hole, and let us consider a
region of spacetime defined by r < 7;, where r; is a constant that is much smaller than R. This
inequality defines a narrow world tube that surrounds the small black hole, and we shall call this
region the internal zone (see Figure 10). In the internal zone the gravitational field is dominated
by the black hole, and the metric can be expressed as

g(internal zone) = g(black hole) + Hy /R + Ho/R* + ..., (555)
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where g(black hole) is the metric of a nonrotating black hole in isolation (as given by the unper-
turbed Schwarzschild solution), while H; and Hs are corrections associated with the conditions in
the external universe. The metric of Equation (555) represents a black hole that is distorted by
the tidal gravitational field of the external universe, and H;, Hy are functions of m and the space-
time coordinates that can be obtained by solving the Einstein field equations. They must be such
that the spacetime possesses a regular event horizon near r = 2m, and such that g(internal zone)
agrees with the metric of the external universe — the metric of the background spacetime in the
absence of the black hole — when r > m. As we shall see in Section 5.4.2, H; actually vanishes and
the small correction Hy/R? can be obtained by employing the well-developed tools of black-hole
perturbation theory [51, 59, 63].

Consider now a region of spacetime defined by r > r., where 7. is a constant that is much
larger than m; this region will be called the external zone (see Figure 10). In the external zone
the gravitational field is dominated by the conditions in the external universe, and the metric can
be expressed as

g(external zone) = g(background spacetime) 4+ mhy +m?hy + ..., (556)

where g(background spacetime) is the unperturbed metric of the background spacetime in which
the black hole is moving, while h; and hs are corrections associated with the hole’s presence; these
are functions of R and the spacetime coordinates that can be obtained by solving the Einstein
field equations. We shall truncate Equation (556) to first order in m, and mh; will be calculated
in Section 5.4.3 by linearizing the field equations about the metric of the background spacetime.
In the external zone the perturbation associated with the presence of a black hole cannot be
distinguished from the perturbation produced by a point particle of the same mass, and mhy will
therefore be obtained by solving Equation (493) in the background spacetime.

The metric g(external zone) returned by the procedure described in the preceding paragraph is
a functional of a world line 7 that represents the motion of the small black hole in the background
spacetime. Our goal is to obtain a description of this world line, in the form of equations of motion
to be satisfied by the black hole; these equations will be formulated in the background spacetime.
It is important to understand that fundamentally, v exists only as an external-zone construct: It
is only in the external zone that the black hole can be thought of as moving on a world line; in
the internal zone the black hole is revealed as an extended object and the notion of a world line
describing its motion is no longer meaningful.

Equations (555) and (556) give two different expressions for the metric of the same spacetime;
the first is valid in the internal zone r < r; < R, while the second is valid in the external zone
r > re > m. The fact that R > m allows us to define a buffer zone in which r is restricted to
the interval re < r < r;. In the buffer zone r is simultaneously much larger than m and much
smaller than R — a typical value might be vmR — and Equations (555, 556) are simultaneously
valid. Since the two metrics are the same up to a diffeomorphism, these expressions must agree.
And since g(external zone) is a functional of a world line v while g(internal zone) contains no such
information, matching the metrics necessarily determines the motion of the small black hole in the
background spacetime. What we have here is a beautiful implementation of the general observation
that the motion of self-gravitating bodies is determined by the Einstein field equations.

It is not difficult to recognize that the metrics of Equations (555, 556) can be matched in the
buffer zone. When r > m in the internal zone, the metric of the unperturbed black hole can be
expanded as g(black hole) = n @ m/r @ m?/r?> @ ..., where 7 is the metric of flat spacetime (in
asymptotically inertial coordinates) and the symbol & means “and a term of the form...”. On the
other hand, dimensional analysis dictates that H;/R be of the form r/R®&m/R &m?/(rR)®...
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while Hy/R? should be expressed as r2/R? @ mr/R? ® m?/R? @ .... Altogether we obtain

g(buffer zone) = n@m/rem?/ria ...
or/Rem/Rem?/(rR) @ ...
ori/REPomr/RPeam?/R*®...
®... (557)

for the buffer-zone metric. If instead we approach the buffer zone from the opposite side, letting r be
much smaller than R in the external zone, we have that the metric of the background spacetime can
be expressed as g(background spacetime) = n@&r/R @& r?/R*@ ..., where the expansion now uses
world-line based coordinates such as the Fermi normal coordinates of Section 3.2 or the retarded
coordinates of Section 3.3. On dimensional grounds we also have mh; = m/r&m/R&mr/R*®. ..
and m2?hy = m?/r> @ m?/(rR) @ m?/R? @ .... Altogether this gives

g(buffer zone) = n @& r/Rer2/R*D ...
em/r®m/Remr/R>® ...
em?/r*em?/(rR) e m?/R* @ ...
D ... (558)

for the buffer-zone metric. Apart from a different ordering of terms, the metrics of Equations (557)
and (558) have identical forms.

Matching the metrics of Equations (555) and (556) in the buffer zone can be carried out in
practice only after performing a transformation from the external coordinates used to express
g(external zone) to the internal coordinates employed for g(internal zone). The details of this
coordinate transformation will be described in Section 5.4.4, and the end result of matching — the
MiSaTaQuWa equations of motion — will be revealed in Section 5.4.5.

5.4.2 Metric in the internal zone

To flesh out the ideas contained in the previous Section 5.4.1 we first calculate the internal-zone
metric and replace Equation (555) by a more concrete expression. We recall that the internal zone
is defined by r < r; < R, where r is a suitable measure of distance from the black hole.

We begin by expressing g(black hole), the Schwarzschild metric of an isolated black hole of
mass m, in terms of retarded Eddington-Finkelstein coordinates (u,7,64), where @ is retarded
time, 7 the usual areal radius, and #4 = (6, ¢) are two angles spanning the two-spheres of constant
@4 and 7. The metric is given by

ds* = —f du® — 2dudr + 72 dQ?,  f=1-"—, (559)
T

where dQ? = Qup d04dAP = db? + sin® 0 d¢? is the line element on the unit two-sphere. In the
limit r > m this metric achieves the asymptotic values

Jua — —1, gar = —1, 934 =0, 9ap =T Qap;

these are appropriate for a black hole immersed in a flat spacetime charted by retarded coordinates.
The corrections H; and Hs in Equation (555) encode the information that our black hole is not
isolated but in fact immersed in an external universe whose metric becomes g(background spacetime)
asymptotically. In the internal zone the metric of the background spacetime can be expanded in
powers of 7/R and expressed in a form that can be directly imported from Section 3.3. If we as-
sume for the moment that the “world line” 7 = 0 has no acceleration in the background spacetime
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(a statement that will be justified shortly), then the asymptotic values of g(internal zone) must be
given by Equations (210, 211, 212, 213):

gaa — —1 —72E* + O(Fg/RB)a gar = —1,

2 O x 2% — =20 1— O * 2% —
8ad — gf?) (EA+B3) + O(r*/R?), gis — 7 Qap — 57“4 (Eip + Bip) + O /R?),

where - o - o - o o
EX =E40°00 EL=E0%00 Ehp =28,040% + £ Qup (560)
and - o - - - o
By = eancQ4QB,Q0 B g = 2e,,40°B4000) (561)

are the tidal gravitational fields that were first introduced in Section 3.3.8. Recall that Q% =
(sin  cos ¢, sin 0 sin @,

cosf) and Q94 = 90°/004. Apart from an angular dependence made explicit by these rela-
tions, the tidal fields depend on % through the frame components £, = Raop0 = O(1/R?) and
B = 2% Ropeq = O(1/R?) of the Riemann tensor. (This is the Riemann tensor of the back-
ground spacetime evaluated at # = 0.) Notice that we have incorporated the fact that the Ricci
tensor vanishes at 7 = 0: The black hole moves in a vacuum spacetime.

The modified asymptotic values lead us to the following ansatz for the internal-zone metric:

gua = —f [L+72e1(P)E*] + O(F*/R?), (562)
Sur = —1, (563)
- gﬁ' [e2(ME; + ba(F)BY] + O(F/R?), (564)
gip =7 Qap — %774 les(F)E4p + bs(F)Bap| + O |R?). (565)

The five unknown functions ey, es, e, bo, and b can all be determined by solving the Einstein field
equations; they must all approach unity when r > m and be well-behaved at » = 2m (so that the
tidally distorted black hole will have a nonsingular event horizon). It is clear from Equations (562,
563, 564, 565) that the assumed deviation of g(internal zone) with respect to g(black hole) scales as
1/R?. Tt is therefore of the form of Equation (555) with H; = 0. The fact that H; vanishes comes
as a consequence of our previous assumption that the “world line” 7 = 0 has a zero acceleration
in the background spacetime; a nonzero acceleration of order 1/R would bring terms of order 1/R
to the metric, and Hy would then be nonzero.

Why is the assumption of no acceleration justified? As I shall explain in the next paragraph
(and you might also refer back to the discussion of Section 5.3.7), the reason is simply that it reflects
a choice of coordinate system: Setting the acceleration to zero amounts to adopting a specific — and
convenient — gauge condition. This gauge differs from the Lorenz gauge adopted in Section 5.3,
and it will be our choice in this section only; in the following Section 5.4.3 we will return to the
Lorenz gauge, and the acceleration will be seen to return to its standard MiSaTaQuWa expression.

Inspection of Equations (560) and (561) reveals that the angular dependence of the metric
perturbation is generated entirely by scalar, vectorial, and tensorial spherical harmonics of degree
{ = 2. In particular, Ho contains no £ = 0 and £ = 1 modes, and this statement reflects a choice
of gauge condition. Zerilli has shown [63] that a perturbation of the Schwarzschild spacetime with
¢ = 0 corresponds to a shift in the mass parameter. As Thorne and Hartle have shown [58], a black
hole interacting with its environment will undergo a change of mass, but this effect is of order
m?3/R? and thus beyond the level of accuracy of our calculations. There is therefore no need to
include £ = 0 terms in Hy. Similarly, it was shown by Zerilli that odd-parity perturbations of degree
¢ =1 correspond to a shift in the black hole’s angular-momentum parameters. As Thorne and
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Hartle have shown, a change of angular momentum is quadratic in the hole’s angular momentum,
and we can ignore this effect when dealing with a nonrotating black hole. There is therefore no need
to include odd-parity, £ = 1 terms in H,. Finally, Zerilli has shown that in a vacuum spacetime,
even-parity perturbations of degree ¢/ = 1 correspond to a change of coordinate system — these
modes are pure gauge. Since we have the freedom to adopt any gauge condition, we can exclude
even-parity, £ = 1 terms from the perturbed metric. This leads us to Equations (562, 563, 564,
565), which contain only ¢ = 2 perturbation modes; the even-parity modes are contained in those
terms that involve &£,p, while the odd-parity modes are associated with B,,. The perturbed metric
contains also higher multipoles, but those come at a higher order in 1/R; for example, the terms of
order 1/R? include ¢ = 3 modes. We conclude that Equations (562, 563, 564, 565) is a sufficiently
general ansatz for the perturbed metric in the internal zone.

There remains the task of finding the functions ey, es, e3, by, and b3. For this it is sufficient to
take, say, £12 = &1 and Bis = B as the only nonvanishing components of the tidal fields &, and
Bap- And since the equations for even-parity and odd-parity perturbations decouple, each case can
be considered separately. Including only even-parity perturbations, Equations (562)—(565) become

gaa = —f (1 + 7e1E125in° Osin 24) gur = —1,
» o 2, e
8ag = 37°e2€128in 6 cos 0sin 29, 8ip = 37 e2E19 sin? 0 cos 2¢,
_ _ 2 o _
ggg = 7> — 37 es€12(1 4 cos® 0) sin 26, 8op = —§f463512 sin 6 cos f cos 2¢,

o _ B B
855 = 77 sin® 0 + 57463512 sin” (1 + cos? 0) sin 2¢.

This metric is then substituted into the vacuum Einstein field equations, Go3 = 0. Calculating the
Einstein tensor is simplified by linearizing with respect to £12 and discarding its derivatives with
respect to @: Since the time scale over which &,; changes is of order R, the ratio between temporal
and spatial derivatives is of order 7/R and therefore small in the internal zone; the temporal deriva-
tives can be consistently neglected. The field equations produce ordinary differential equations to
be satisfied by the functions e;, ez, and e3. Those are easily decoupled, and demanding that the
functions all approach unity as r — oo and be well-behaved at r = 2m yields the unique solutions

eif)=ex(r)=f,  es(r)=1-—-. (566)
Switching now to odd-parity perturbations, Equations (562, 563, 564, 565) become

2 _ - 2 . _ -
gau = —f gar = —1, gug = —§f3b2812 sin 6 cos 2¢, 8up = gF?’bgBlg sin? 6 cos 0 sin 20,

2 - - 1 _ _ -
g55 =T + §f4b3812 cos 6 cos 2¢, 835 = 75774133812 sin@(1 + cos? 6) sin 2¢,

_ 9 o ~
835 = 7 sin f — 57463312 sin” 6 cos 6 cos 2¢.
Following the same procedure, we arrive at
by(r) = f,  bs(r) =1L (567)

Substituting Equations (566) and (567) into Equations (562, 563, 564, 565) returns our final
expression for the metric in the internal zone.

It shall prove convenient to transform g(internal zone) from the quasi-spherical coordinates
(7,04) to a set of quasi-Cartesian coordinates 7% = 7Q%(64). The transformation rules are worked
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out in Section 3.3.7 and further illustrated in Section 3.3.8. This gives

goa = —f (L+72fE*) + O(F*/R?), (568)

Bua = ~0a + 277 (62 + BY) + OGP /R?), (569)
2

s = b = 0uy = 37 (1225 ) €6 = 3780 + O /RP), (570

where f =1 — 2m/7 and where the tidal fields

E* = £,0°Q°, (571)
Er = (8,0 — Q.0 &,.9°, (572)
E = 2Eap — 20aEpe0¢ — 20400 + (605 + Q) ET, (573)
B! = 4.0 B°,Q1, (574)
By, = cacaQBYL (6% — Q) + e5eaQ°BL (6%, — Q) (575)

were first introduced in Section 3.3.8. The metric of Equations (568, 569, 570) represents the
spacetime geometry of a black hole immersed in an external universe and distorted by its tidal
gravitational fields.

5.4.3 Metric in the external zone

We next move on to the external zone and seek to replace Equation (556) by a more concrete
expression; recall that the external zone is defined by m <« r, < r. As was pointed out in
Section 5.4.1, in the external zone the gravitational perturbation associated with the presence of
a black hole cannot be distinguished from the perturbation produced by a point particle of the
same mass; it can therefore be obtained by solving Equation (493) in a background spacetime with
metric g(background spacetime). The external-zone metric is decomposed as

gaB = Jagp + haﬁa (576)

where gop is the metric of the background spacetime and ho,g = O(m) is the perturbation; we
shall work consistently to first order in m and systematically discard all terms of higher order. We
relate hog to trace-reversed potentials v,g,

1
hap = Yap — 3 (975%5) JaBs (577)

and solving the linearized field equations produces
Yap(2) = 4m/ Giapuw (@, 2)utu” dr, (578)
Y

where z#(7) gives the description of the world line 7, 7 is proper time in the background spacetime,

ut = dz"/dr is the four-velocity, and G fﬁy(x, z) is the retarded Green’s function associated with

Equation (493); the potentials of Equation (578) satisfy the Lorenz-gauge condition vaﬂ 5 =0 As
was pointed out in Section 5.4.1, v, (and therefore h,g) are functionals of a world line ~ that will
be determined by matching g(external zone) to g(internal zone).

We now place ourselves in the buffer zone (where m <« r < R and where the matching will take
place) and work toward expressing g(external zone) as an expansion in powers of r/R. For this
purpose we will adopt the retarded coordinates (u, 7)) of Section 3.3 and rely on the machinery
developed there.
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We begin with g.g, the metric of the background spacetime. We have seen in Section 3.3.8
that if the world line v is a geodesic, if the vectors e/ are parallel transported on the world line,
and if the Ricci tensor vanishes on +, then the metric takes the form given by Equations (207,
208, 209). This form, however, is too restrictive for our purposes: We must allow v to have an
acceleration, and allow the basis vectors to be transported in the most general way compatible
with their orthonormality property; this transport law is given by Equation (138),

De#

d’ra = agut +wel, (579)

where a,(7) = aye! are the frame components of the acceleration vector a* = Du*/dr, and
wab(T) = —wpa(7) is a rotation tensor to be determined. Anticipating that a, and wgp will both
be proportional to m, we express the metric of the background spacetime as

Guu = —1 — 2ra Q" — r?E* + O(r*/R?), (580)
2
Gua = —Q +7 (6,0 — Q) ap — rwpQ’ + §7‘2 (& +BY) +0O(r®/R?), (581)
1
Gab = Oap — Qal — =77 (E3y + Bly) + O(r* /R?), (582)

where £, £, €%, B, and B, are the tidal gravitational fields first introduced in Section 3.3.8.
The metric of Equations (580, 581, 582) is obtained from the general form of Equations (171, 172,
173) by neglecting quadratic terms in a, and wg, and specializing to a zero Ricci tensor.

To express the perturbation h,s as an expansion in powers of /R we first go back to Equa-

tion (498) and rewrite it in the form

4m
Y (2) = Uy (2,0 )u 0+ 8 ), (583)

in which primed indices refer to the retarded point 2’ = z(u) associated with z, and
X u T<
,Ygéa[b;l(x) = 4m/ Vaglw(x, Z)u“u” dr + 4m/ G+a5#y(x,z)u#u’/ dr
T< —o0

= 4m/ Giapuw(x, 2)uru” dr (584)

is the “tail part” of the gravitational potentials (recall that 7 is the proper time at which + enters
a’s normal convex neighbourhood from the past). We next expand the first term on the right-
hand side of Equation (583) with the help of Equation (501), and the tail term is expanded usmg
Equation (93) in which we substitute Equation (504) and the familiar relation 0% = —r(u® +
Q%e2"). This gives

/

4m ’ Lo
Yap(x) =g ag 5 —ua/ugf + ’ycﬁlﬁl, + rv&a}[}, (u"’ + Q%7 ) + C’)(mrQ/R?’)] , (585)

where ’ygﬁg, is the tensor of Equation (584) evaluated at 2/, and where

2l (af) = dm / Vo Gryariop (', 2l u? dr (586)
—o0

was first defined by Equation (545).
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At this stage we introduce the trace-reversed fields
u- 1 ,
ht%lé/( /) = 4m/ <G+a/5/ﬂ«1’ — 2ga/ﬁ/G+5§,uy> (a:’, Z)’U,ILU,U d7'7 (587)

u- 1 ,
i (2)) = 4m/ A <G+a’ﬁ/,uu - zga/g/G+65/W> (2, 2)utu” dr (588)

and recognize that the metric perturbation obtained from Equations (577) and (585) is

’ ’

2 ’ ’
hagp(@ )gagﬁﬁ{ (Quartig + garger) + il +rhiZl, (w0 +QCBZ)+O(mr2/R3)]. (589)

This is the desired expansion of the metric perturbation in powers of r/R. Our next task will be
to calculate the components of this tensor in the retarded coordinates (u,r2%).

The first step of this computation is to decompose hqg in the tetrad (ef, ey) that is obtained by
parallel transport of (uo‘/, eg‘/) on the null geodesic that links x to its corresponding retarded point
x' = z(u) on the world line. (The vectors are parallel transported in the background spacetime.)
The projections are

2m
hoo(u, 7, Q%) = hage§eg = — + hia(u) + 7 [k (u) + AL (w)Q°] + O(mr?/R?), (590)
hop(u, 7, Q%) = hagele; = h“‘“( )+ 7 [hle (u) + high (w)Q°] + O(mr?/R?), (591)
hap(u, 7, Q%) = hopele)) = 75@ + i () + o [R5 (u) + WL (w)QC] + O(mr? /R?);  (592)

on the right- hand side we have the frame components of h3}, and hfﬁ%w, taken with respect to

the tetrad (u® e ), these are functions of retarded time u only.
The perturbation is now expressed as

hap = hooege% + hop (ege% + ege%) + habege%,

and its components are obtained by involving Equations (169) and (170), which list the components
of the tetrad vectors in the retarded coordinates; this is the second (and longest) step of the
computation. Noting that a, and wy, can both be set equal to zero in these equations (because
they would produce negligible terms of order m? in h,g), and that Sgp, S,, and S can all be
expressed in terms of the tidal fields £*, £}, £, B, and B}, using Equations (204, 205, 206), we
arrive at

2
huu — ﬂ + htall 4 (ng* + hg?)lol + h(t)%léga) + O(mTQ/Rg), (593)
hua = 79 G+ Quhl! | 2mE" QT (€5 + BL) + hit + Quhlih + hEQ" + QuhlH°
+ (/)(7,'17"2/7?/3)7 (594)
2m

hab — 7 (5ab —|—Q Qb) + Q Qbhtaﬂ —|—Q htall + Qbhtall htall
2
1| =T (€l + Q]+ % + By + QB + QBy) + 2 (i + i)

+ O (R + G+ (D + BEREQS) + (REES + L) | + O(mr?/R?). (595)
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These are the coordinate components of the metric perturbation h,g in the retarded coordinates
(u, 7Q2%), expressed in terms of frame components of the tail fields htaa,%b} and htcfﬁ%?v,. The per-
turbation is expanded in powers of r/R and it also involves the tidal gravitational fields of the
background spacetime.

The external-zone metric is obtained by adding gos as given by Equations (580, 581, 582) to
hag as given by Equations (593, 594, 595). The final result is

Cuu = —1 - r25* +0(r3/R?)

—|— oy Rl + 7 (2mE* — 2a,Q% + hify + hinQ®) + O(mr? /R?), (596)
8ua = —Qq + 57“2 (5* + B;) + O<T3/R3)

+ 79 + htall + Q htall

r

+r [2m5 0+ 20 (5*+B*) (00" —2") ap—wap$2" +hio +Qahio + i QL+ Qahiey Q°

+ O(mr? /R3) (597)
8ab = Oab — Ly — =12 (EXy + By) + O(r* /R?)

2m

+ 7 (6ab +Q Qb) +Q Qbhtall +Q, htaﬂ 4 Qbhtall + hz%ﬂ

2
+r[—;”( + Q] + EX + By + QuBi + QB + Qa0 (R + hi0°)

+Qa (Ao + hipe ) + Qb (A3 + hiaeQ) + (R + hipeQ2°) | + O(mr?/R?). (598
Because hte‘,lés, is of order m/R and hta,%sv, of order m/R?, we see that the metric possesses the
buffer-zone form g = n ® r?/R? ® m/r ® m/R & mr/R? that was anticipated in Equation (558).

Notice that the expansion adopted here does not contain a term at order r/R and presumes that
aq and w,y, are both of order m/R?; this will be confirmed in Section 5.4.5.

5.4.4 Transformation from external to internal coordinates

Comparison of Equations (568, 569, 570) and Equations (596, 597, 598) reveals that the internal-
zone and external-zone metrics do no match in the buffer zone. But as the metrics are expressed
in two different coordinate systems, this mismatch is hardly surprising. A meaningful compari-
son of the two metrics must therefore come after a transformation from the external coordinates
(u,7Q?) to the internal coordinates (u,72*). Our task in this section is to construct this coor-
dinate transformation. We shall proceed in three stages. The first stage of the transformation,
(u, rQ2*) — (u/,7'Q*), will be seen to remove unwanted terms of order m/r in gos. The second
stage, (u/,7'Q"*) — (u”,r"Q"*), will remove all terms of order m/R in gop. Finally, the third
stage (u”,r"Q"*) — (a, rQ ) will produce the desired internal coordinates.
The first stage of the coordinate transformation is

u =u—2mlnr, (599)
m a
- (1 + 7) 2, (600)

and it affects the metric at orders m/r and mr/R?. This transformation redefines the radial
coordinate — 7 — 7’ = r +m — and incorporates in u’ the gravitational time delay contributed by

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

122 Eric Poisson

the small mass m. After performing the coordinate transformation the metric becomes
Guw = —1— /25/* 4 O(T’S/RS)
2 . .
+ = + A (AmE — 20,9 + b + W) + O(mr'? R?), (601)

+ §T’2 (€1 + BL) + 06" /R

htall + Ql htall

gu'a’ = _Q/

7' {—3 (€74 B3) + (00— %) @b — wap®” + i + Vohooo + hiar?” + Qhopp 2"
+ O(mr'?IR?), (602)
1
Ca't! = 5ab — QI QI — §T'2 ( % + B,*) -+ O(Tls/Rg)
+ Q/ Q/ htall + Ql htall + Q/ htall htall
+r { (E0 + QLET + EQy + Bl + QLB + B + QL (hiss + higeY©)
+ 9 (g + hige) + 4 (htao + Moae¥) + (i + hapel)

+ O(mr'?IR?). (603)

This metric matches g(internal zone) at orders 1, r2/R?, and m/r’, but there is still a mismatch
at orders m/R and mr’/R2.
The second stage of the coordinate transformation is

1 u 1 .
W= — 5/ h(t)%ll(u/) du — 5 [htall( ) 4 thall( /)Q/a + hﬁll(u/)Q/aQ/b] , (604)
ol = a4 S hE ), (605)

and it affects the metric at orders m/R and mr/R?. After performing this transformation the
metric becomes

Gurur = —1 — 7“//25//* + O(T”S/R3)

2 1. ... L
e [4m5”* —2 (aa — Shia + h@j;%) Q”“} +O(mr"™R?), (606)
2
gurar = —QU + grm (Er + B+ 0" IR?)
w| Amo . ey "o (§0 QU L i tail | _ 11b
+r 5 (E + B) —2mEp Q" + (8, — QuQ") | ap 2h00b + hogo wapd

1 a1 gai . 1 :
+ 50 — hap” + howQ" + 5 (8. + Q") hf)%‘;} +O(mr' [R?), (607)
1
Gary = 5ab Q”Q” . 3 112( (/1/; + //*) + O( IIS/RS)

2
+ ’I“H |:;TL ( //* + Q//g//* gtll/*Qg + :z/lj 4 Q//B//* Q;;BZ*) + QZQ;), (hf)%% 4 hgegle//c)

Oac

52 (Al AEO) + 07 (1 + ) + (13 + o)

+ O(mr'"?|R?). (608)
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To arrive at these expressions we had to involve the relations

d : ; d ; d .
B Lyt N e (609

which are obtained by covariant differentiation of Equation (587) with respect to w. The metric
now matches g(internal zone) at orders 1, r"2/R?, m/r", and m/R, but there is still a mismatch
at order mr” /R2.

The third and final stage of the coordinate transformation is

1

= u// 17,//2 I:hg%lé 4 (hf)%l,i 4 QhBZi(l)) Q/la + (hta?)l(l) + 2h8?1%) Q”aQ”b 4 hfl%iclgan//bQ//c] , (610)
- (1 + T,’,//E/‘b Ql/bQ//c) IL'/,
1 12 tail tail tail tail tail 4ﬂ 11b b y11e
+5 2 hOOa + h‘OaO + hOab - hOba + habO + 3 5.ab Q + (Qabc - cha + Qcab) QrQ ;
(611)
where
L et | ™M d d
Qabc = §habc + § (Each b + Ebch a) . (612)
This transformation puts the metric in its final form
2m = O * 1 tail tail =2 3
+ ? + T 4m5 — 2 Qq — ihooa =+ hoao + O(m'f‘ /R ), (613)
2
gaz = —Qq +3 7 (& + B;) + O /R?)
4 _ _ _ .
7 {_ (& +B2) + (5, — 0,0) (ab - Lh hgzg) (- nig) 0 ]
+ O(mi?/R?), (614)
_ _ 1 _ _ . P
8.5 = Oab — Ll — §f2 (Exp + Byy) + O(F /R3) + O(mi? /R?). (615)

Except for the terms involving a, and wgp, this metric is equal to g(internal zone) as given by
Equations (568, 569, 570) linearized with respect to m.

5.4.5 Motion of the black hole in the background spacetime

A precise match between g(external zone) and g(internal zone) is produced when we impose the
relations

1 i i
= Shigi — i (616)

and _
Wab = hisy- (617)

While Equation (616) tells us how the black hole moves in the background spacetime, Equa-
tion (617) indicates that the vectors e# are not Fermi-Walker transported on the world line.

The black hole’s acceleration vector a* = a®e can be constructed from the frame components
listed in Equation (616). A straightforward computation gives

1 . .
alt = =2 (" + uu”) (2K, — B ) wtu”, (618)
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where the tail integral

, T 1 .o
h/t_iilA = 4m/ v)\ (G+;wu’u’ - 29ﬂuG+pp#/y/> (Z(’T),Z(T/)) ut u” d’T/ (619)

was previously defined by Equation (588). These are the MiSaTaQuWa equations of motion,
exactly as they were written down in Equation (550). While the initial derivation of this result
was based upon formal manipulations of singular quantities, the present derivation involves only
well-behaved fields and is free of any questionable aspect. Such a derivation, based on matched
asymptotic expansions, was first provided by Yasushi Mino, Misao Sasaki, and Takahiro Tanaka
in 1997 [39].
Substituting Equations (616) and (617) into Equation (579) gives the following transport equa-
tion for the tetrad vectors:
D = S (2ni

- ht;;)’;) u”ea\up + (g" + utuP) ht;?i)}p]u”eé‘. (620)

This can also be written in the alternative form

De# 1 )
dTa =-3 (u"eé‘u” + g“)‘eZ — g“peé‘) u”hty‘}‘i) (621)
that was first proposed by Mino, Sasaki, and Tanaka. Both equations state that in the background
spacetime, the tetrad vectors are not Fermi—Walker transported on v; the rotation tensor is nonzero
and given by Equation (617).

5.5 Concluding remarks

I have presented a number of derivations of the equations that determine the motion of a point scalar
charge ¢, a point electric charge e, and a point mass m in a specified background spacetime. In
this concluding section I summarize these derivations, and identify their strengths and weaknesses.
I also describe the challenges that lie ahead in the concrete evaluation of the self-forces, most
especially in the gravitational case.

5.5.1 Conservation of energy-momentum

For each of the three cases (scalar, electromagnetic, and gravitational) I have presented two different
derivations of the equations of motion. The first derivation is based on a spatial averaging of the
retarded field, and the second is based on a decomposition of the retarded field into singular
and radiative fields. In the gravitational case, a third derivation, based on matched asymptotic
expansions, was also presented. These derivations will be reviewed below, but I want first to explain
why I have omitted to present a fourth derivation, based on energy-momentum conservation, in
spite of the fact that historically, it is one of the most important.

Conservation of energy-momentum was used by Dirac [25] to derive the equations of motion
of a point electric charge in flat spacetime, and the same method was adopted by DeWitt and
Brehme [24] in their generalization of Dirac’s work to curved spacetimes. This method was also
one of the starting points of Mino, Sasaki, and Tanaka [39] in their calculation of the gravitational
self-force. I have not discussed this method for two reasons. First, it is technically more difficult
to implement than the methods presented in this review (considerably longer computations are
involved). Second, it is difficult to endow this method with an adequate level of rigour, to the
point that it is perhaps less convincing than the methods presented in this review. While the level
of rigour achieved in flat spacetime is now quite satisfactory [56], I do not believe the same can
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be said of the generalization to curved spacetimes. (But it should be possible to improve on this
matter.)

The method is based on the conservation equation T°° .5 = 0, where the stress-energy tensor
77 includes a contribution from the particle and a contribution from the field; the particle’s
contribution is a Dirac functional on the world line, and the field’s contribution diverges as 1/r?
near the world line. (I am using retarded coordinates in this discussion.) While in flat spacetime
the differential statement of energy-momentum conservation can immediately be turned into an
integral statement, the same is not true in a curved spacetime (unless the spacetime possesses at
least one Killing vector). To proceed it is necessary to rewrite the conservation equation as

0= g#aTaﬁ;ﬁ = (gMaTaﬁ);,B o g“a;BTaﬁ’

where g* (z, z) is a parallel propagator from z to an arbitrary point z on the world line. Integrating
this equation over the interior of a world-tube segment that consists of a “wall” of constant r and
two “caps” of constant u, we obtain

0:/ HgMaTaﬁdEﬁ+/ guaTaﬁdEBJr/t ' g#a;ﬁTaﬁdV’
wa. caps mterior

where d¥3 is a three-dimensional surface element and dV' an invariant, four-dimensional volume
element.

There is no obstacle in evaluating the wall integral, for which 7% reduces to the field’s stress-
energy tensor; for a wall of radius r the integral scales as 1/r2. The integrations over the caps,
however, are problematic: While the particle’s contribution to the stress-energy tensor is integrable,
the integration over the field’s contribution goes as f 2 dr' and diverges. To properly regularize
this integral requires great care, and the removal of all singular terms can be achieved by mass
renormalization [24]. This issue arises also in flat spacetime [25], and while it is plausible that the
rigourous distributional methods presented in [56] could be generalized to curved spacetimes, this
remains to be done. More troublesome however, is the interior integral which does not appear
in flat spacetime. Because g g scales as 7, this integral goes as fo ~Ldr’ and it also diverges,
albeit less strongly than the caps integration. While simply dlscardlng this integral produces the
correct equations of motion, it would be desirable to go through a careful regularization of the
interior integration, and provide a convincing reason to discard it altogether. To the best of my
knowledge, this has not been done.

5.5.2 Averaging method

To identify the strengths and weaknesses of the averaging method it is convenient to adopt the
Detweiler—Whiting decomposition of the retarded field into singular and radiative pieces. For
concreteness I shall focus my attention on the electromagnetic case, and write

S R
F@B:Faﬁ+Faﬁ

Recall that this decomposition is unambiguous, and that the retarded and singular fields share the
same singularity structure near the world line. Recall also that the retarded and singular fields
satisfy the same field equations (with a distributional current density on the right-hand side), but
that the radiative field is sourcefree.

To formulate equations of motion for the point charge we temporarily model it as a spherical
hollow shell, and we obtain the net force acting on this object by averaging F,3 over the shell’s
surface. (The averaging is performed in the shell’s rest frame, and the shell is spherical in the sense
that its proper distance from the world line is the same in all directions.) The averaged field is
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next evaluated on the world line, in the limit of a zero-radius shell. Because the radiative field is
smooth on the world line, this yields

e(Fu)u’ = e<F3V> u” + eF/iu”,

where

S v . 2¢?
e(Fy,)u’ =—(0m)ay, (5m:%1ir(1) 35

and

V[HG";])\/ (2(1),2(7")) w dr'.

2 1
EF/ILD;/uV = 62 (g,ltl/ + u/;,ul/) <3CLV + 3RV)\U/\> + QGQUV/

The equations of motion are then postulated to be ma, = e (F,)u”, where m is the particle’s
bare mass. With the preceding results we arrive at meopsa, = erF; E,u”, where meops = m + dm is
the particle’s observed (renormalized) inertial mass.

The averaging method is sound, but it is not immune to criticism. A first source of criticism
concerns the specifics of the averaging procedure, in particular, the choice of a spherical surface over
any other conceivable shape. Another source is a slight inconsistency of the method that gives rise
to the famous “4/3 problem” [52]: The mass shift dm is related to the shell’s electrostatic energy
E = €%/(2s) by dm = 3 E instead of the expected dm = E. This problem is likely due [15] to the
fact that the field that is averaged over the surface of the shell is sourced by a point particle and
not by the shell itself. It is plausible that a more careful treatment of the near-source field will
eliminate both sources of criticism: We can expect that the field produced by an extended spherical
object will give rise to a mass shift that equals the object’s electrostatic energy, and the object’s
spherical shape would then fully justify a spherical averaging. (Considering other shapes might
also be possible, but one would prefer to keep the object’s structure simple and avoid introducing
additional multipole moments.) Further work is required to clean up these details.

The averaging method is at the core of the approach followed by Quinn and Wald [49], who
also average the retarded field over a spherical surface surrounding the particle. Their approach,
however, also incorporates a “comparison axiom” that allows them to avoid renormalizing the
mass.

5.5.3 Detweiler—-Whiting axiom

The Detweiler—Whiting decomposition of the retarded field becomes most powerful when it is
combined with the Detweiler—Whiting axiom, which asserts that

the singular field exerts no force on the particle (it merely contributes to the particle’s inertia);
the entire self-force arises from the action of the radiative field.

This axiom, which is motivated by the symmetric nature of the singular field, and also its causal
structure, gives rise to the equations of motion ma, = eF}}yu”, in agreement with the averaging
method (but with an implicit, instead of explicit, mass shift). In this picture, the particle simply
interacts with a free radiative field (whose origin can be traced to the particle’s past), and the
procedure of mass renormalization is sidestepped. In the scalar and electromagnetic cases, the
picture of a particle interacting with a radiative field removes any tension between the nongeodesic
motion of the charge and the principle of equivalence. In the gravitational case the Detweiler—
Whiting axiom produces the statement that the point mass m moves on a geodesic in a spacetime
whose metric gog + hgﬁ is nonsingular and a solution to the vacuum field equations. This is a
conceptually powerful, and elegant, formulation of the MiSaTaQuWa equations of motion.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-6


http://www.livingreviews.org/lrr-2004-6

The Motion of Point Particles in Curved Spacetime 127

5.5.4 Matched asymptotic expansions

It is well known that in general relativity the motion of gravitating bodies is determined, along with
the spacetime metric, by the Einstein field equations; the equations of motion are not separately
imposed. This observation provides a means of deriving the MiSaTaQuWa equations without hav-
ing to rely on the fiction of a point mass. In the method of matched asymptotic expansions, the
small body is taken to be a nonrotating black hole, and its metric perturbed by the tidal gravi-
tational field of the external universe is matched to the metric of the external universe perturbed
by the black hole. The equations of motion are then recovered by demanding that the metric
be a valid solution to the vacuum field equations. This method, which was the second starting
point of Mino, Sasaki, and Tanaka [39], gives what is by far the most compelling derivation of the
MiSaTaQuWa equations. Indeed, the method is entirely free of conceptual and technical pitfalls —
there are no singularities (except deep inside the black hole) and only retarded fields are employed.

The introduction of a point mass in a nonlinear theory of gravitation would appear at first sight
to be severely misguided. The lesson learned here is that one can in fact get away with it. The
derivation of the MiSaTaQuWa equations of motion based on the method of matched asymptotic
expansions does indeed show that results obtained on the basis of a point-particle description can
be reliable, in spite of all their questionable aspects. This is a remarkable observation, and one
that carries a lot of convenience: It is much easier to implement the point-mass description than
to perform the matching of two metrics in two coordinate systems.

5.5.5 Evaluation of the gravitational self-force

The concrete evaluation of the scalar, electromagnetic, and gravitational self-forces is made chal-
lenging by the need to first obtain the relevant retarded Green’s function. Successes achieved in
the past were reviewed in Section 1.10, and here I want to describe the challenges that lie ahead. 1
will focus on the specific task of computing the gravitational self-force acting on a point mass that
moves in a background Kerr spacetime. This case is especially important because the motion of a
small compact object around a massive (galactic) black hole is a promising source of low-frequency
gravitational waves for the Laser Interferometer Space Antenna (LISA) [32]; to calculate these
waves requires an accurate description of the motion, beyond the test-mass approximation which
ignores the object’s radiation reaction.
The gravitational self-acceleration is given by the MiSaTaQuWa expression, which I write in
the form
Du#

1
= a [hR] = —= (¢" + uru”) (2hiy., — hli”pw) utu’,

2 vA;p

where hgg is the radiative part of the metric perturbation. Recall that this equation is equivalent to
the statement that the small body moves on a geodesic of a spacetime with metric g+ hgﬁ. Here
gap is the Kerr metric, and we wish to calculate a*[h®] for a body moving in the Kerr spacetime.
This calculation is challenging and it involves a large number of steps.

The first sequence of steps is concerned with the computation of the (retarded) metric pertur-
bation h,g produced by a point particle moving on a specified geodesic of the Kerr spacetime. A
method for doing this was elaborated by Lousto and Whiting [34] and Ori [44], building on the
pioneering work of Teukolsky [57], Chrzanowski [18], and Wald [61]. The procedure consists of

e solving the Teukolsky equation for one of the Newman—Penrose quantities 1y and 14 (which
are complex components of the Weyl tensor) produced by the point particle;

e obtaining from )y or ¢4 a related (Hertz) potential ¥ by integrating an ordinary differential
equation;
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e applying to ¥ a number of differential operators to obtain the metric perturbation in a
radiation gauge that differs from the Lorenz gauge; and

e performing a gauge transformation from the radiation gauge to the Lorenz gauge.

It is well known that the Teukolsky equation separates when 1y or 14 is expressed as a multipole
expansion, summing over modes with (spheroidal-harmonic) indices [ and m. In fact, the procedure
outlined above relies heavily on this mode decomposition, and the metric perturbation returned at
the end of the procedure is also expressed as a sum over modes hfl - (For each [, m ranges from —I to
I, and summation of m over this range is henceforth understood.) From these, mode contributions
to the self-acceleration can be computed: a*[h;] is obtained from our preceding expression for the
self-acceleration by substituting hfx,@ in place of hgﬁ. These mode contributions do not diverge
on the world line, but a*[h;] is discontinuous at the radial position of the particle. The sum over
modes, on the other hand, does not converge, because the “bare” acceleration (constructed from
the retarded field h,g) is formally infinite.

The next sequence of steps is concerned with the regularization of each a*[h;] by removing
the contribution from hiﬁ [6, 7,9, 11, 38, 21]. The singular field can be constructed locally in
a neighbourhood of the particle, and then decomposed into modes of multipole order I. This
gives rise to modes a#[h}] for the singular part of the self-acceleration; these are also finite and
discontinuous, and their sum over [ also diverges. But the true modes a*[h}] = a#[h;] — a*[h}]
of the self-acceleration are continuous at the radial position of the particle, and their sum does
converge to the particle’s acceleration. (It might be noted that obtaining a mode decomposition of
the singular field involves providing an extension of h3 5 on a sphere of constant radial coordinate,
and then integrating over the angular coordinates. The arbitrariness of the extension introduces
ambiguities in each a*[h}], but the ambiguity disappears after summing over [.)

The self-acceleration is thus obtained by first computing a*[h;] from the metric perturbation
derived from 1y or ¥4, then computing the counterterms a* [hls] by mode-decomposing the singular
field, and finally summing over all a#[hR] = a#[h;] —a*[h}]. This procedure is lengthy and involved,
and thus far it has not been brought to completion, except for the special case of a particle falling
radially toward a nonrotating black hole [5]. In this regard it should be noted that the replacement
of the central Kerr black hole by a Schwarzschild black hole simplifies the task considerably. In
particular, because there exists a practical and well-developed formalism to describe the metric
perturbations of a Schwarzschild spacetime [51, 59, 63], there is no necessity to rely on the Teukolsky
formalism and the complicated reconstruction of the metric variables.

The procedure described above is lengthy and involved, but it is also incomplete. The reason is
that the metric perturbations hlaﬁ that can be recovered from 1 or 14 do not by themselves sum
up to the complete gravitational perturbation produced by the moving particle. Missing are the
perturbations derived from the other Newman—Penrose quantities: 1, 12, and ¥3. While ¢; and
13 can always be set to zero by an appropriate choice of null tetrad, 1o contains such important
physical information as the shifts in mass and angular-momentum parameters produced by the
particle [60]. Because the mode decompositions of ¥y and 14 start at | = 2, we might colloquially
say that what is missing from the above procedure are the “/ = 0 and [ = 1”7 modes of the metric
perturbations. It is not currently known how the procedure can be completed so as to incorporate
all modes of the metric perturbations. Specializing to a Schwarzschild spacetime eliminates this
difficulty, and in this context the low multipole modes have been studied for the special case of
circular orbits [43, 22].

In view of these many difficulties (and I choose to stay silent on others, for example, the issue
of relating metric perturbations in different gauges when the gauge transformation is singular on
the world line), it is perhaps not too surprising that such a small number of concrete calculations
have been presented to date. But progress in dealing with these difficulties has been steady, and
the situation should change dramatically in the next few years.
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5.5.6 Beyond the self-force

The successful computation of the gravitational self-force is not the end of the road. After the
difficulties reviewed in the preceding Section 5.5.5 have all been removed and the motion of the
small body is finally calculated to order m, it will still be necessary to obtain gauge-invariant
information associated with the body’s corrected motion. Because the MiSaTaQuWa equations of
motion are not by themselves gauge-invariant, this step will necessitate going beyond the self-force.

To see how this might be done, imagine that the small body is a pulsar, and that it emits
light pulses at regular proper-time intervals. The motion of the pulsar around the central black
hole modulates the pulse frequencies as measured at infinity, and information about the body’s
corrected motion is encoded in the times-of-arrival of the pulses. Because these can be measured
directly by a distant observer, they clearly constitute gauge-invariant information. But the times-
of-arrival are determined not only by the pulsar’s motion, but also by the propagation of radiation
in the perturbed spacetime. This example shows that to obtain gauge-invariant information, one
must properly combine the MiSaTaQuWa equations of motion with the metric perturbations.

In the context of the Laser Interferometer Space Antenna, the relevant observable is the in-
strument’s response to a gravitational wave, which is determined by gauge-invariant waveforms,
hy and hy. To calculate these is the ultimate goal of this research programme, and the challenges
that lie ahead go well beyond what I have described thus far. To obtain the waveforms it will be
necessary to solve the Einstein field equations to second order in perturbation theory.

To understand this, consider first the formulation of the first-order problem. Schematically,
one introduces a perturbation h that satisfies a wave equation Oh = T|[z] in the background
spacetime, where T'[z] is the stress-energy tensor of the moving body, which is a functional of the
world line z(7). In first-order perturbation theory, the stress-energy tensor must be conserved
in the background spacetime, and z(7) must describe a geodesic. It follows that in first-order
perturbation theory, the waveforms constructed from the perturbation A contain no information
about the body’s corrected motion.

The first-order perturbation, however, can be used to correct the motion, which is now described
by the world line z(7) 4+ dz(7). In a naive implementation of the self-force, one would now re-
solve the wave equation with a corrected stress-energy tensor, Oh = T[z + dz], and the new
waveforms constructed from h would then incorporate information about the corrected motion.
This implementation is naive because this information would not be gauge-invariant. In fact, to
be consistent one would have to include all second-order terms in the wave equation, not just
the ones that come from the corrected motion. Schematically, the new wave equation would have
the form of Oh = (1 + h)T[z + dz] + (Vh)?, and this is much more difficult to solve than the
naive problem (if only because the source term is now much more singular than the distributional
singularity contained in the stress-energy tensor). But provided one can find a way to make this
second-order problem well posed, and provided one can solve it (or at least the relevant part of it),
the waveforms constructed from the second-order perturbation h will be gauge invariant. In this
way, information about the body’s corrected motion will have properly been incorporated into the
gravitational waveforms.

The story is far from being over.
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