
Spherically Symmetric, Static Space-Time

Metric Structure

We take the metric in the following form, along with this choice for (orthonormal) tetrad:

ds2 = g = J(r) dr2 + r2(dθ2 + sin2 θ dφ2)−H(r) dt2 = (ω∼
r)2 + (ω∼

θ)2 + (ω∼
φ)2 − (ω∼

t)2 ,

ω∼
r̂ ≡

√
J dr , ω∼

θ̂ ≡ r dθ , ω∼
φ̂ ≡ r sin θ dφ , ω∼

t̂ ≡
√
H dt .

(1)

The “guess” method of determining the connection 1-forms, Γ∼
µ
ν , works in a straight-forward

way, giving the following results:

Connections:

 Γ∼r̂θ̂ = − ω∼
θ̂

r
√
J
, Γ∼r̂φ̂ = − ω∼

φ̂

r
√
J
, Γ∼r̂t̂ =

H′

2
√
JH

ω∼
t̂ ,

Γ∼θ̂φ̂ = − cot θ
r

ω∼
φ̂ , Γ∼θ̂t̂ = 0 , Γ∼φ̂t̂ = 0 ,

(2)

where the prime is used to indicate derivative with respect to r, i.e., H ′ ≡ dH/dr.

The curvature 2-forms are then easily calculated, and give

Curvatures:


Ω∼r̂θ̂ = J′

2rJ2 ω∼
r̂ ∧ ω∼

θ̂ , Ω∼r̂φ̂ = J ′

2rJ2ω∼
r̂ ∧ ω∼

φ̂ ,

Ω∼r̂t̂ =
1

2
√
JH

(
H′

√
JH

)′
ω∼
r̂ ∧ ω∼

t̂ , Ω∼θ̂φ̂ = 1
r2

{
1− J−1

}
ω∼
θ̂ ∧ ω∼

φ̂ ,

Ω∼θ̂t̂ =
H′

2rJH
ω∼
θ̂ ∧ ω∼

t̂ , Ω∼φ̂t̂ =
H′

2rJH
ω∼
φ̂ ∧ ω∼

t̂ .

(3)

Since there are only 4 independent functional quantities involved, it may be useful to define

A ≡ J ′

2rJ2
= Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ , B ≡ 1

r2
{
1− J−1

}
= Rθ̂φ̂θ̂φ̂ ,

C ≡ H ′

2rJH
= Rθ̂t̂θ̂t̂ = Rφ̂t̂φ̂t̂ , D ≡ 1

2
√
JH

(
H ′

√
JH

)′

= Rr̂t̂r̂t̂ ,

(4)

Notice that all the components of Rµνλη are diagonal in the sense that they are zero unless µν

is the same as λη, or of course the reverse, ηλ.

Riemann Curvature for our spherically-symmetric, static metrics

Returning to our particular case, where we are insisting that we want spherical symmetry,

and also no dependence on time, returning to the values already presented in Eqs. (3) and (4),

we find that R is diagonal, along with N ≡ 0:

R =−→
(

M N
NT Q

)
, M =

B 0 0
0 A 0
0 0 A

 , Q =

D 0 0
0 C 0
0 0 C

 . (6)



Notice that the equality of the second and third diagonal elements of each of M and Q comes

from the spherical symmetry of the problem, i.e., the fact that θ and φ are being treated

equally. Therefore, we may now determine the Ricci tensor, Rµν ≡ Rλ
µλν , or the Einstein

tensor, Gµν ≡ Rµν − 1
2gµνR

λ
λ, and also the conformal tensor. We have

Rr̂r̂ = 2A−D , Rθ̂θ̂ = A+B−C = Rφ̂φ̂ , Rt̂t̂ = D+ 2C , (7)

Gt̂t̂ = trace(M) = B+ 2A , Gr̂r̂ = 2C−B , Gθ̂θ̂ = D+C−A = Gφ̂φ̂ , (8)

R = trace(Ricci) = −trace(Einstein) = 2 trace(Q−M) = 2(2A+B−D− 2C) (9)

Displayed, also as a 6× 6 matrix, the Weyl tensor is also diagonal, and traceless:

Cr̂θ̂r̂θ̂ = −ρ = Cr̂φ̂r̂φ̂ , Cθ̂φ̂θ̂φ̂ = +2ρ ,

Cθ̂t̂θ̂t̂ = +ρ = Cφ̂t̂φ̂t̂ , Cr̂t̂r̂t̂ = −2ρ ,

ρ ≡ 1

6
(C−A+B−D) .

(10)

The conformal tensor may also be described in terms of what are usually called the Petrov

scalars, which turn out to be in this case:

Ψ++ = Ψ+ = 0 = Ψ− = Ψ−− , Ψ0 = −2ρ . (11)

which corresponds, generically, to Petrov Type D.

Geodesic Structure

The equations for parallel transport of an arbitrary vector w̃, along a curve with tangent

vector ũ, may be written in the following form, where prime means the action of ũ on the

scalar in question, i.e., it is the derivative with respect to the parameter along the curve:

∇
ũ
w̃ = 0 =



(wr̂)′ − 1

r
√
J

(
wθ̂uθ̂ + wφ̂uφ̂

)
+

H ′

2
√
JH

wt̂ut̂ = 0 ,

(wθ̂)′ +
1

r
√
J
wr̂uθ̂ − cot θ

r
wφ̂uφ̂ = 0 ,

(wφ̂)′ +
1

r
√
J
wr̂uφ̂ +

cot θ

r
wθ̂uφ̂ = 0 ,

(wt̂)′ +
H ′

2
√
JH

wr̂ut̂ = 0 ,

. (12)
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When ũ is timelike, i.e., is the tangent vector to a curve describing a possible motion for a

physical creature, and also when we use that creature’s proper time, τ , as the parameter along

that curve, then we refer to it as the 4-velocity for that creature, and because we are using the

proper time as the parameter, it has the property that ũ2 = −1. If we use an orthonormal

basis for our vectors, then we may divide it further, and easily relate it to the more ordinary

3-velocity, v⃗. In such an orthonormal basis, we may write

ũ2 = (u⃗)2 − (ut̂)2 = −1 ,

 ut̂ = γ ,

uî/ut̂ = vi ,
, (13a)

so that the content of the statement that ũ2 = −1 is now the same as the familiar statement

that γ−2 = 1− (v⃗)2. In our problem this means

uµ̂ =−→ (
√
J r′ , r θ′ , r sin θ φ′ ,

√
H t′ ) ,

γ =
√
H t′ =

√
H

dt

dτ
,

vr̂ = ur̂/ut̂ =

√
J

H

dr

dt
, vθ̂ = uθ̂/ut̂ =

r√
H

dθ

dt
, vφ̂ = uφ̂/ut̂ =

r sin θ√
H

dφ

dt
.

(13b)

In the case that we choose ũ itself as the vector w̃ that was being parallel transported

back in Eqs. (13), i.e., when we are determining equations to insist that ũ defines a geodesic

path, then the symmetries of the metric immediately allow all of these equations to be inte-

grated, where we put directly into evidence those equations which contain the 3 constants of
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integration:



√
H ut̂ = H t′ = A

= −pt/µ —the energy per unit (test particle) mass, dimensionless,

r sin θ uφ̂ = r2 sin2 θ φ′ = B ≡ pφ/mass ,

—the z-component of angular momentum per unit (test particle) mass ,

which has the dimension of length,

ruθ̂ = r2θ′ = ±
√

ℓ2 −B2/ sin2 θ ,

or (r2Ω′)2 = r2{(uθ̂)2 + (uφ̂)2} = (r2θ′)2 + (r2 sin θ φ′)2 = ℓ2 ,

with ℓ the total angular momentum per unit (test particle) mass,

of the dimension of length,

where A,B, and ℓ are constants.
(14)

We do not attempt to solve the ode for ur̂—however, see the last line of Eqs. (16)—since it is

much simpler to write down the standard normalization condition for the affine parameter τ

and its associated 4-velocity, and insert those conserved quantities we already have:

−µ = (ur̂)2 + (uθ̂)2 + (uφ̂)2 − (ut̂)2 = (ur̂)2 +
ℓ2

r2
− A2

H
, (15)

where µ is either +1 for timelike motions or 0 for lightlike motions, which gives us a moderately-

simple 1st-order ode for ur̂, or a nonlinear, 2nd-order ode for dr/dτ .

However, we won’t even do that because we can also immediately notice that

(1) if one takes θ = π/2, and θ′ = 0, then the geodesic remains, always, within the equatorial

plane, with ℓ = B so that θ′ remains zero, and

(2) the remainder of the equations may be written in a form appropriate for motion in that

equatorial plane:
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θ′′ = 0 ,

φ′ = B/r2 ,

t′ = A/H ,

(ur̂)′ = (
√
J r′)′ =

B2

r3
√
J
− A2 H ′

2
√
J H2

,

(16)

along with the normalization equation

J (r′)2 +

(
B

r

)2

− A2

H
= −µ . (17a)

where µ takes on the values +1 or 0, depending on whether the geodesic is timelike or null.

The solutions of these equations, then, have trajectories, i.e., r versus φ in the equatorial

plane—where θ = π/2, θ′ = 0—of the form(
dr

dφ

)2

=
1

J

[
−µ

r4

B2
− r2 +

A2

B2

r4

H

]
, (17b)

Applications to Vacuum

The general, relevant solution to the Einstein vacuum, field equations is given by J−1 =

H = 1−2M
r , where M is a constant of integration, interpreted as the central mass, that causes

the gravitational field at large distances consonant with Newtonian gravity. The particular

value of that constant is determined, of course, by knowing that H ≈ (1+ϕ)2, for small values

of ϕ, the gravitational potential, and that the gravitational potential for a central mass is such

that ϕ −→
r→∞

0.

Under these circumstances, i.e., in vacuum, it is useful to rewrite some things taking

account of these values of H and J . We especially now rewrite the particle-motion equations,

for the vacuum case, with prime denoting the derivative with respect to proper time, τ :

take the following definition: H ≡
√
H = 1/

√
J ;

(ut̂)′+H,ru
r̂ ut̂ = 0 ,

(uθ̂)′ +
H
r
ur̂ uθ̂ − cot θ

r
(uφ̂)2 = 0 , (uφ̂)′ +

H
r
ur̂ uφ̂ +

cot θ

r
uθ̂ uφ̂ = 0 ,

(ur̂)′− ℓ2
H
r3

+A2H,r

H2
= 0 ,

and the normalization

(
r′

H

)2

+
ℓ2

r2
− A2

H2
= −µ = −1 or 0 ,

(18a)
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while the orbit equation—the specialization to vacuum of Eq. (17b)—has the form(
du

dφ

)2

=
1

r4

(
dr

dφ

)2

=
A2

B2
− (1− 2m

r
)

(
1

r2
+

µ

B2

)
, (18b)

where u ≡ 1/r and µ = 0 or 1, as usual, for null or timelike geodesics. The general solution of

this equation may be written in the form

2m

r
= P( 12 (φ+ δ)) +

1

3
, (18c)

where P(z) is the Weierstrass elliptic function. The Weierstrass function is an even function

of complex z, with a double pole at z = 0, and has two independent periods, whose ratio is

always complex, and satisfies the first-order, nonlinear ode:

(P ′)2 = 4P3 − aP − b ,

where a and b are constants determined by the periods.

We will, however, discuss in more detail some interesting special cases, where the orbits

are considerably simpler. For example, radial or circular, or ellipses with precessing perihelia

(and aphelia).
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Applications to Spherically-Symmetric, Ideal Fluids at Rest

If we agree to model a non-rotating star by an ideal fluid, then, at rest, it is characterized

totally by its density, ρ, and its pressure P , both of which must depend only upon the radial

variable r. Then the Einstein equations read

Gµν = 8π Tµν − Λ gµν = 8π {P gµν + (ρ+ P )uµuν} − Λ gµν . (19)

We can see that, were one to care, the cosmological constant acts something like a negative

pressure in this situation.

Using these equations, and setting Λ ≡ 0, we get

J−1 =1− 8π

r

∫ r

0

r2 dr ρ(r) ≡ 1− 2M(r)

r
,

M(r) ≡ 4π

∫ r

0

r2 dr ρ(r) =

∫ r

0

r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dφ ρ(r) .

(20)

Progressing onward to the other equations, we find the Tolman-Oppenheimer-Volkov

equation, which gives a relation between the pressure, P , and the density ρ, namely

dP

dr
= −(ρ+ P )

M(r) + 4πr3P

r(r − 2M(r))
, (21)

and the equation which, in principle, can be used to determine H = H(r), namely

d

dr
(logH) =

H ′

H
= 8π rPJ(r) +

J − 1

r
=

2M(r) + 8π r3P

r(r − 2M(r))
. (22)

In the simple case, where we assume ρ = ρ0, i.e., a constant, we can integrate these

equations and find that

P (r)

ρ0
=

√
1− 2M

r −
√
1− 2M

R

(
r
R

)2√
1− 2M

R

(
r
R

)2 − 3
√
1− 2M

r

,

H(r) =

 3
2

√
1− 2M

R
− 1

2

√
1− 2M

R

(
r

R

)2


2

, (23)

J−1(r) = 1− 2M(r)

r
= 1− 2M

R

(
r

R

)2

.
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Since we want to insist that the pressure at the center not be infinite, this puts a bound on

R, namely that it must be greater than 9
4M , which is already greater than 2M , thus keeping

the horizon of the exterior solution inside itself—for this case of constant density. We note that

in fact this bound on R/M can be shown without such a stringent assumption; it is sufficient

to assume that

i.) there exists a quantity R such that ρ(r) = 0 for all r > R,

ii.) that the density is monotone decreasing, i.e., that dρ/dr ≤ 0,

iii.) and that 2M(r) < r, i.e., that J is non-singular within the fluid.

Applications to Time-Dependence, as well

In the event where J and H and both allowed to depend on time, as well as the radial

coordinate, then there are slight changes in the connections and curvature. We find that only

one connection 1-form is changed, namely

Γ∼r̂t̂ acquires an additional term
1

2
√
JH

J̇√
J
ω∼
r , (24)

where the overdot indicates a time derivative. In the same way, 3 of the Cartan curvature

2-forms acquire extra terms:

Rr̂t̂r̂t̂ has the additional term
H(J̇)2 − 2JHJ̈ + JJ̇Ḣ

4(JH)2
,

Rr̂θ̂θ̂t̂ =− 1/2r
J̇/J√
JH

= Rr̂φ̂φ̂t̂ .

(25)

This generates a single non-diagonal term in the Ricci tensor, as well as some additional terms

in Gθ̂θ̂ = Gφ̂φ̂:

Rr̂t̂ =
J̇/J

r
√
JH

. (26)
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