
Summary of Formulae for the Robertson-Walker Metric

It is helpful to begin with a few careful definitions of some mathematical notions associated

with these metrics.

1. A (local) diffeomorphism is a mapping of some (open) neighborhood of a manifold M into

itself that is invertible and both it and its inverse are differentiable.

2. A (local) isometry is a (local) diffeomorphism that also preserves the metric structure of the

manifold within that neighborhood.

3. A space is homogeneous in some neighborhood, U , if any point, P ∈ U ⊆M can be mapped

by an isometry into any other point, Q ∈ U ⊆M .

4. A space is isotropic in some neighborhood, U ⊆ M , if at every point P ∈ U , there exists

an isometry that leaves the point P fixed, but which maps any basis vector in ≤ TP into any

other such basis vector.

Note: Isotropy implies the existence of the maximal number of independent isometries possible.

Note: Isotropy about every point implies homogeneity

5. A spatially homogeneous spacetime is one which is foliated by a one-parameter family,

Σt, of spacelike hypersurfaces, each one of which is homogeneous. By foliated, we mean that

the entire spacetime is made up of “leaves,”—the many Σt—all “stacked up” on top of each

other, as the parameter t takes on all its allowed values.

6. A spatially isotropic spacetime is one which contains a congruence of timelike curves, with

tangent ũ, i.e., (co-moving) observers, that fill the spacetime and are such that for each point

P ∈ M the spacelike-directed curves orthogonal to ũP , that correspond locally to directions

to other such observers, fill a (locally) spacelike surface that is an isotropic 3-surface.

Presuming that the space is spatially isotropic everywhere, these spacelike surfaces are in

fact just the spacelike hypersurfaces Σt discussed in the previous section. By adjusting their



origins and scales, if necessary, this congruence of observers possesses a uniform proper time,

which we refer to as “cosmic time,” and use the variable t to refer to it.

7. The 3 metric(s) discovered, separately, by Friedmann, with Lemaitre involved, and again

by Robertson and Walker describe all possible 4-dimensional spacetimes which are spatially

isotropic (and homogeneous). They therefore require the existence, as above, of a foliation by

spacelike hypersurfaces {Σt | t = −∞ . . .+∞}. On these surfaces, we denote the 3-dimensional,

spatial metric there by σ ≡ σij dx
idxj , and note that there are only 3 possible such metrics,

i.e., which are everywhere homogeneous and isotropic, all of which of course have constant

curvature:

positive curvature, a 3-sphere: σ = dψ2 + sin2 ψ (dθ2 + sin2 θ dφ2) ,

zero curvature, flat Euclidean space: σ = dψ2 + ψ2 (dθ2 + sin2 θ dφ2) ,

negative curvature, a 3-hyperboloid: σ = dψ2 + sinh2 ψ (dθ2 + sin2 θ dφ2) .

It is of course more usual to use the symbol r instead of ψ when the space is flat; nonetheless,

this generates a uniformity in the appearance which has some value. Actually, let’s do that,

but let’s do it somewhat more generically: We define a symbol r for each of these three allowed

spaces:

dψ ≡


dr√
1−r2

, for the 3-sphere,

dr , for flat 3-space,
dr√
1+r2

, for the 3-hyperboloid,
=⇒ r ≡ f(ψ) =

{
sinψ , for the 3-sphere,
ψ , for flat 3-space,
sinhψ , for the 3-hyperboloid.

We may then insert the one or the other of these metrics into the notion above, of foliating

the spacetime by homogeneous, isotropic 3-surfaces, and having normal, timelike geodesics for

them. We can use a time-dependent scaling, with dimensions of length, that would multiply

each 3-metric, which allows us to write the most general such metric in the following form:

g = −dt2 +R2(t)σ = −dt2 +R2(t)

{
dr2

1− kr2
+ r2 dΩ2

}
, k = +1, 0,−1 . (1)

Sometimes it is also useful to introduce a different time variable, often referred to as “arc-time,”

which demonstrates explicitly that our metric is conformally equivalent to a simpler one. We

define

dη ≡ dt/R(t) , (1a)

2



and write the metric in the following alternative form, showing that it is conformally equivalent

to flat space:

g = R2(t)
{
−dη2 + dψ2 + f2(ψ) dΩ2

}
. (1b)

We define an orthonormal tetrad for the Robertson-Walker metric in the obvious way,

ω∼
r ≡ Rdψ = R

dr√
1− kr2

, ω∼
θ ≡ Rr dθ , ω∼

φ ≡ Rr sin θ dφ , ω∼
t = dt = Rdη . (2)

Then we may immediately calculate the connection 1-forms,

Γ∼rθ = −
√
1− kr2

r R
ω∼
θ , Γ∼rφ = −

√
1− kr2

r R
ω∼
φ , Γ∼θφ = −cot θ

r R
ω∼
φ ,

Γ∼rt =
Ṙ

R
ω∼
r , Γ∼θt =

Ṙ

R
ω∼
θ , Γ∼φt =

Ṙ

R
ω∼
φ ,

(3)

and the curvature 2-forms,

Ω∼rθ =
Ṙ2 + k

R2
ω∼
r ∧ ω∼θ , Ω∼rφ =

Ṙ2 + k

R2
ω∼
r ∧ ω∼φ , Ω∼θφ =

Ṙ2 + k

R2
ω∼
θ ∧ ω∼φ ,

Ω∼rt = − R̈
R
ω∼
r ∧ ω∼t , Ω∼rt = − R̈

R
ω∼
θ ∧ ω∼t , Ω∼rt = − R̈

R
ω∼
φ ∧ ω∼t ,

(4)

or one can describe the curvatures by the very simple forms:

Rrθrθ = Rrφrφ = Rθφθφ =
Ṙ2 + k

R2
, Rrtrt = Rθtθt = Rφtφt = − R̈

R
. (5)

From this one calculates immediately the conformal and Einstein parts of the curvature:

Cµνλη = 0 ,

Grr = Gθθ = Gφφ = −

{
2
R̈

R
+
Ṙ2 + k

R2

}
, Gtt = 3

Ṙ2 + k

R2
, Gµν = 0 , µ ̸= ν

(6)

Given that we want to solve Einstein’s equations, it is worth noting that the structure we have

is that in this frame,

a.) Einstein’s tensor is diagonal,

b.) all 3 of the diagonal, spatial components of Einstein’s tensor are equal, and
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c.) the temporal component is different, so that there are only two independent degrees

of freedom in the Einstein tensor.

These properties are also exactly the distinguishing characteristics of the stress-energy

tensor for a perfect fluid, characterized by its pressure, P , and its rest-energy density, ρ;

therefore, if we wanted to set Einstein’s tensor equal to some stress-energy tensor for some sort

of matter, it would actually have to correspond to that for a perfect fluid. The two Einstein

equations are then simply

Gµν − Λ gµν = 8π Tµν ;

8π P + Λ = −

(
2
R̈

R
+
Ṙ2 + k

R2

)

8π ρ− Λ = 3
Ṙ2 + k

R2
,

(7)

so that we could “identify” those parts of the curvature that act like pressure, and like energy

density.

These equations may be re-written in various useful ways. One approach is

R̈

R
= − 4π

3
(ρ+ 3P )− Λ

3
,

H2 ≡
(
Ṙ

R

)2

=
8π

3
ρ− k

R2
− Λ

3
.

(7a)

An approach that has recently become common is to claim that one should re-define Λ and

k so that they look like densities. First considering Λ, we may define ρΛ ≡ −Λ/8π = −PΛ.

(As shown below, in Eq. (8), if ρ + P = 0, then ρ is a constant, consistent with the fact that

Λ is a constant.) This construction not only takes the (Friedmann) equation for the Hubble

parameter, H, and puts it in a form “easier to remember,” but also does the same thing for

the acceleration equation:

R̈

R
= − 4π

3
[(ρtr + 3Ptr) + (ρΛ + 3PΛ)] ,(

Ṙ

R

)2

=
8π

3
(ρtr + ρΛ)− k/R2 ,

(7b)
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where we have used the subscript tr to indicate all the true matter, as opposed to the ones

coming from the cosmological constant.

We may also divide the equation for the Hubble constant by itself, to create an equation

for a collection of dimensionless quantities all of which must add to the value +1:

1 =
ρtr
ρc

− k

Ṙ2
− Λ

H2
≡ Ωtr +Ωk +ΩΛ , ρc ≡ H2/(8π/3) . (7c)

Separately, we can apply the Bianchi identity to the problem. We know that it says that

the divergence of each side is equal to zero. Straightforward calculation shows that the 4

components of Tµν
;ν = 0 amount to the three reasonably trivial equations ∇P = 0, which just

say that the pressure does not change in space, and then the fourth one

3(ρ+ P )
Ṙ

R
+ ρ̇ = 0 ,

or

d

dt
(ρR3) + P

d

dt
R3 = 0 ⇔ 0 =

d

dt
E + P

d

dt
V ,

(8)

where the third version of the equation above should remind us of the adiabatic expansion of

our ideal gas.

Were we to know the equation of state for this matter, i.e., the relationship P = P (ρ),

then we could presumably solve this equation, remove P , say, from the equations above, and

have a simpler problem to deal with. Therefore, it is customary to divide the total energy

density, ρ into contributions from matter, ρm and from radiation, ρr, where we presume that

we do in fact know the equations of state for those sorts of materials: We assume that we can

treat the two separately, i.e., that they do not interact, at least not in the last more than 10

billion years, and, furthermore, that the equations of state allow us to say that Pm = 0 while

Pr = ρr/3. This allows to make statements about the dependence on R(t) of these terms:

ρmR
3 = a constant , ρrR

4 = a constant

=⇒ ρ(t) = ρm(t) + ρr(t) = ρm0

(
R0

R(t)

)3

+ ρr0

(
R0

R(t)

)4

, P (t) =
1

3
ρr0

(
R0

R(t)

)4

(
Ṙ

R

)2

+
k

R2
− 8π

3

{
ρm0

(
R0

R

)3

+ ρr0

(
R0

R

)4
}

= − 1
3Λ (9)
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This shows us the dependence of H2 on terms that depend on 1/Rn, where n has the values

0, 2, 3, and 4. One can then think of this as an equation of the standard form for the motion

of a particle in a potential well, that one takes in ordinary classical mechanics, where the

H2 = (Ṙ/R)2 term is a kinetic energy, the others are potential energies and the cosmological

constant acts like a (constant) energy term.

On the other hand, it is often better not to look at this equation in this form, but, rather

to use the “arc time,” η, as a variable instead. From Eq. (1a) we have the relationship

dη

dt
=

1

R
=⇒ dR/dη = RṘ = R2 Ṙ

R
, (10a)

so that multiplication of the so-called Friedmann equation, Eq. (9) above, by a factor of R4

allows it to be written in the following form, which no longer has difficulties at R = 0, and is

therefore much more useful, for instance, for computerized calculations, dt/dη = R being the

other member of a pair of calculations to determine R and t as functions of η:(
dR

dη

)2

= +B2 +AR− k R2 − 1
3ΛR

4 , (10b)

where A and B2 are positive constants,

A ≡ 2
4π

3
ρm0R

3
0 , B2 ≡ 2

4π

3
ρr0R

4
0 , (10c)

and the quantities with subscript 0 are evaluated at some particular time, presumably now.

The “history,” i.e., the time evolution, of this metric can then be obtained by solving

together the pair of parametrized differential equations, (10a) and (10b) above, for R = R(η)

and t = t(η). In the geneeral case, when the cosmological constant, Λ, is non-zero, the analytical

solution of this equation involves elliptic functions and/or numerical calculations, although one

can get acquire some understanding of it by simply using the potential-well method of thought

already mentioned. In particular, the “potential” shown in Eq. (9), as a function of R, goes to

negative infinity as R→ 0, to zero as R goes to infinity, and has a maximum for finite R only
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when k = +1. As well, the 3 curves for the 3 allowed values of k are moderately similar, with

the one for k = −1 below the one for k = 0, which is below the one for k = +1. Depending on

the value of Λ, for smaller Λ one has oscillatory behavior for all values of k, while for values

of Λ so that the “energy”-term lies above the maximum values of the “potential” the value of

R(t) will simply continue to increase forever, with no extremum reached.

On the other hand the cases with Λ = 0 may be integrated fairly easily, giving the following

results:

k = + 1 ⇒


R = A(1− cos η) +B sin η ,

t = A(η − sin η) +B(1− cos η) ,

=⇒ R(η = π) = 2A, max. R if A >> B .

k = − 1 ⇒


R = A(cosh η − 1) +B sinh η ,

t = A(sinh η − η) +B(cosh η − 1) ,

=⇒ R(t) ≈ t for very long times.

k = 0 ⇒


R = Bη + 1

2Aη
2 ,

t = 1
2Bη

2 + 1
6Aη

3 .

(11)

In all 3 cases we have the approximate behavior at very early times, so long as B ̸= 0:

R(t) ≈
√
2Bt +O(t) . (12a)

If, for some reason, we would have B = 0, i.e., no “radiation,” then there are other possibilities:

B = 0 = Λ , A ̸= 0 =⇒ R ∝ t
2/3

+O(t) ,

k = B = 0 = A , Λ ̸= 0 =⇒ R = R0 e
±
√

−Λ/3 t .

(12b)

Additional Comments on the timelike geodesics of our cosmic observers:

Our initial assumption concerning the congruence of observers, who measure “cosmic

time” as their own proper time, and for whom our spacelike foliations are the homogeneous

and isotropic 3 surfaces, allows us to describe this congruence so that their 4-velocities are

simply ẽt. We can understand this congruence much better if we ask the usual questions
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about how these observers see the other members of their congruence, which requires that we

caculate the (arbitrary 3-direction) covariant derivative of the congruence, i.e., determine the

expansion, rotation, and shear. This requires the covariant derivative of ũ. We will calculate

this as follows:

Bµλ ≡ gµη∇λu
µ = gµη∇λδ

µ
t = Γµ t λ .

Consulting our table of connections we easily find that this matrix is diagonal, with

Brr = Bθθ = Bφφ =
Ṙ

R
≡ H(t) , Btt = 0 .

Therefor both the shear and the rotation (or twist) are zero, while the expansion (or dilation)

is given by

Θ = 3
Ṙ

R
= 3H ,

showing that the Hubble parameter is a scale length, with its time dependence indicating the

rate at which the “distance” between different cosmic observers is changing.

It is also very good that the twist is zero, since the requirement for a congruence ũ to have a

globally-defined hypersurface to which it is the normal is that ũ ∧ dũ = 0, which is just the

twist, the rotation by a different name, and approach for calculation.

Comments on the Geodesic Equations over this Manifold:

The equations for a geodesic, with tangent vector ũ = uµ̂ ẽµ̂, and affine parameter τ , are

the following, where we first recall the components of ũ in our current basis:

ũ =−→
(

R√
1− kr2

r′ , r R θ′ , r R sin θ φ′ , t′
)
,

µ ≡ −1 or 0 = (ũ)2 = (ur̂)2 + (uθ̂)2 + (uφ̂)2 − (ut̂)2 ,

(13)

where of course the option in the last equation, for the value of the constant µ, depends on

whether the geodesic is timelike or null. We may then write the necessary equations, with
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d/dτ denoted by a prime:

(ur̂)′ −
√
1− kr2

r R
[(uθ̂)2 + (uφ̂)2] +

Ṙ

R
ur̂ ut̂ = 0 ,

(uθ̂)′ +

√
1− kr2

r R
ur̂ uθ̂ − cot θ

r R
(uφ̂)2 +

Ṙ

R
uθ̂ ut̂ = 0 ,

(uφ̂)′ +

√
1− kr2

r R
ur̂ uφ̂ +

cot θ

r R
uθ̂ uφ̂ +

Ṙ

R
uφ̂ ut̂ = 0 ,

(ut̂)′ +
Ṙ

R
[(ur̂)2 + (uθ̂)2 + (uφ̂)2] = 0 .

(14)

As we know this manifold has a large amount of symmetry, there are several constants of the

motion that allow partial integrations of the geodesic equations:{
R(t)r sin θ uφ̂

}
= C, a constant,{

R(t)r uθ̂
}2

+

(
C

sin θ

)2

= L2, a constant,

{
R(t)ur̂

}2
+

(
L

r

)2

= Q2, a constant,

(ut̂)2 =

(
dt

dτ

)2

= −µ+
Q2

R2(t)
,

(15)

where the constant µ is either −1, for timelike curves, or 0 for null curves.
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