
Lie Derivatives and (Conformal) Killing Vectors

0. Motivations for Lie derivatives

On some manifold, M, or at least in some neighborhood, U ⊆ M, we are concerned

with a congruence of curves, all with tangent vectors given by ξ̃, that are important for some

particular problem, for instance the motions of a physical system over time, beginning at

various different, nearby initial positions that lie in U . The Lie derivative is then a method

of making a comparison of the value that some geometric object has at some point along the

curve relative to the value that it would have had if it had been “dragged” along that curve

to the same point, where we will carefully define below what we mean by the “dragging” of

a geometric object. The Lie derivative, along ξ̃ of some object T , will be defined (below) as

the first-order change of this type, i.e., the first non-trivial term in the (infinite) Taylor series

describing the changes that occur when moved along the curve with this tangent vector, and

will be denoted by Lξ̃
(T ).

Especially important for relativity theory is the behavior of the metric when moved along

curves on a manifold. We will define a conformal Killing vector, ξ̃, as a vector field on a

manifold such that when the metric is dragged along the curves generated by ξ̃ its Lie derivative

is proportional to itself:

L
ξ̃

gµν = 2χ gµν , (0.1)

for some scalar field χ.

The physical understanding of this requirement is that when the metric is dragged along

some congruence of curves it remains itself modulo some scale factor, χ, which may, per-

haps, vary from place to place on the manifold.

In the case that χ is zero, we refer to this as a true Killing vector, and, clearly the metric is

left completely invariant as it is dragged along the curves with that true Killing vector as their

tangent vector. An obvious example is dragging a spherically symmetric metric along a path

of constant latitude on a sphere.



On the other hand, when the field χ is constant, but not zero, the associated Killing vector

is said to be homothetic, and the metric is being changed by a (constant) scale factor as it

moves along. This too is quite interesting from first principles; a simple example is a dilata-

tion, where objects are, for instance, enlarged but otherwise unchanged as you proceed in some

direction—for instance, toward (spacelike) infinity.

Lastly, when χ is actually a function on the manifold, then this is an actual conformal Killing

vector, rather than the more special cases just considered above. The physical meaning of this

case is not quite as obvious, but will be shown below to be related to certain invariances not

of the metric but, rather, of the curvature of the manifold. [Killing vectors are named for a

Norwegian mathematician named W. Killing, who first described these notions in 1892.]

In order to create an appropriate definition of the Lie derivative, with respect to some

vector field, we must first back up quite a bit, to create enough “new” differential geometry

to do this properly. As well, after doing that we will want to proceed forward from that

definition, to discover the integrability conditions that the existence of a Killing vector puts

on the connection and curvature of a manifold.

1. Maps between manifolds, and their associated pullbacks and pushforwards

On some manifold, M, we first choose a point P ∈ U ⊆ M and a map, ϕ, from U to some

other manifold, N , which could be just a different region of our original manifold:

ϕ : U ⊆ M → W ⊆ N , Q ≡ ϕ(P ) ∈ W ⊆ N (1.1)

Since there are various different tensor spaces attached to the manifold in this neighborhood,

and in particular at the point P , it is reasonable to suppose that there should be associated

with this map of the manifolds a method of correlating tensors over P ∈ M to tensors over

Q ≡ ϕ(P ) ∈ N . We intend to explain how this happens in some detail, but will find it

convenient to begin with the simplest sort of tensors, i.e., functions which are tensors of
[
0
0

]
.

Therefore, we now define the pullback of functions defined over N to those defined over M.
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Let f be a function defined over the neighborhood W ⊆ N , i.e., f : W ⊆ N → R. Then we

may define an associated function ϕ∗f : U ⊆ M → R, the pullback of f via ϕ as the following:

pullback

of functions
:

 for ϕ : U ⊆ M → W ⊆ N and f : N → R ,

ϕ∗f : U ⊆ M → R so that ∀S ∈ U ⊆ M, (ϕ∗f)(S) ≡ f(ϕ(S)) .
(1.1)

Since individual coordinates are just functions, this allows me to use a coordinate system near

Q ∈ N to define a coordinate system near P ∈ M, i.e., to pullback the coordinate chart near

Q ∈ N to create a (very strongly associated) coordinate chart near P ∈ M.

Let {yα}n1 be a coordinate system defined over W ⊆ N ; then {xµ ≡ ϕ∗(yα)}m1 is a proper

coordinate system defined over U ⊆ M.

Do note that it is not necessary that the dimensions of the two manifolds be the same,

and we will shortly give examples where this is in fact true. On the other hand, all of our

usages of these ideas to create the Lie derivative will in fact relate to the case when the two

dimensions are in fact the same, and, in fact, to the case where the two manifolds are the same,

even though the two neighborhoods will be different.

Now, since tangent vectors act as operators on functions, this allows us to define the

pushforward of tangent vector fields:

pushforward

of vectors
:

 for ϕ : U ⊆ M → W ⊆ N and ṽ ∈ T|U , ṽ : F|U → F|U

(ϕ∗ṽ) ∈ T|W so that ∀f ∈ F|W , (ϕ∗ṽ)(f) ≡ ṽ(ϕ∗f) .
(1.2)

To see that there actually is something to this definition, let us calculate the relationship

between the components of the two vector fields, relative to their appropriate coordinate sys-

tems, {yµ} and {xµ}, as defined above, noting that in coordinates, we may think of f as a

function of the coordinates yµ, while ϕ∗f is a function of the coordinates xµ:

(ϕ∗ṽ)(f) = (ϕ∗ṽ)
α ∂

∂yα
(f) = (ṽ)ν

∂

∂xν
(ϕ∗f) = ṽν

∂yα

∂xν

∂

∂yα
(f)

=⇒ (ϕ∗ṽ)
α = vν

∂yα

∂xν
. (1.3)
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It is worth remarking that this appears to be exactly the same as the transformation that

happens to the components of a vector when one performs a coordinate transformation at a

single point on the manifold. However, it is really quite different philosophically because we

are comparing components of vectors acting on two different manifolds. There is nonetheless

a reason for this apparent equivalence having to do with the difference between thinking of a

coordinate transformation in a passive mode or in an active mode.

a). The passive mode thinks of transformations of the coordinate charts at each point of

some neighborhood, leaving of course the actual points themselves unchanged.

b). The active mode thinks of transformations of the points themselves of a manifold,

and our method created above for mapping charts into other charts sort of drags the

coordinate charts along.

Continuing, now having a method to move tangent vectors between the two manifolds, and

also functions, we may easily perform the reverse sort of mapping for 1-forms, remembering

that 1-forms map tangent vectors to real numbers: the pullback of a 1-form, α∼ ∈ Λ1
|W is denoted

by ϕ∗α∼ ∈ Λ1
|U :

pullback

of 1-forms
:

 for ϕ : U ⊆ M → W ⊆ N and α∼ ∈ Λ1
|W , α∼ : T|W → R

ϕ∗α∼ : Λ1
|U → R so that ∀ ṽ ∈ T|U , (ϕ∗α∼)(ṽ) ≡ α∼(ϕ∗ṽ) .

(1.4)

We now want the relationship between the two sets of components, which we acquire by

following along the same line of reasoning as was used to determine the relationship between

the two sets of components of the vector fields:

(ϕ∗α∼)µ v
µ = (ϕ∗α∼)(ṽ) ≡ α∼ (ϕ∗ṽ) = αβ(ϕ∗ṽ)

β = αβv
µ ∂y

β

∂xµ

=⇒ (ϕ∗α∼)µ = αβ
∂yβ

∂xµ
.

(1.5)

We see that it is exactly the same (Jacobian) matrix that is involved in the transformation

as for tangent vectors. However, the difference in the two behaviors is the way the matrix is

multiplied, on the left in the one case and on the right in the other, which is again analogous

to the way in which contravariant and covariant objects in general are transformed.
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Now we have sufficiently many definitions to explain why it is that one can pullback

differential forms (including functions, which are after all just 0-forms) but must pushforward

tangent vectors. If we remember that we have created the coordinates on M, {xµ}m1 , as

dependent on the mapping ϕ and the coordinates {yα}n1 on N , this suggests that, for any

particular actual function performing the mapping we should be able to write out explicitly

the xµ = xµ(yα). Therefore, in particular then the chain rule of multi-variable calculus allows

us to write the following relationships:

∂

∂yα
=

∂xµ

∂yα
∂

xµ
, dxµ =

∂xµ

∂yα
dyα , (1.6)

where of course the chain rule treats these two sorts of objects quite differently. Comparing

with the transformations of components for tangent vectors—which have basis vectors as partial

derivatives with respect to the coordinates—and the components for 1-forms—which have basis

vectors as differentials of the coordinates—we see that they transform in exactly the opposite

ways, in both cases, so that those transformation relationships are actually just rather advanced

formulations of the chain rule, on objects defined over manifolds.

2. Definitions for the Lie derivative of tensor fields

The Lie derivative is a method to determine how vector fields are changing in vector spaces

over nearby points. It is different from the covariant derivative, which relies on the specification

of an affine connection, the function of which is to describe, locally, how the choice of a basis

set for vectors changes from point to point over a manifold. Instead, the Lie derivative relies

on the behavior of the vector field which determines a congruence of (non-intersecting) curves

defined in the neighborhood of a point.

To describe this derivative, we continue the discussion in §1, but now specialize to the

case that the manifold N is indeed the same as M, and that there is a given vector field, ξ̃,

defined over some neighborhood that includes both U and W , which might overlap, at least

to some extent. Taking a parameter λ along each of a family of curves with tangent vector
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ξ̃, we may create curves which begin at some arbitrary point R near P ∈ U , which we may

then denote by Γ(λ;R) = eλξ̃R. We can think of the set of these curves, through points in U ,

as constituting an example of the map ϕ between manifolds, as described above, mapping, for

instance P into Q, which we will then note by the symbol ϕλ, since there is a different such

map for each value of λ. In particular, ϕ0 is then the identity map, and ϕ−λ = (ϕλ)
−1, i.e.,

the inverse map to ϕλ, exists and it is just e−λξ̃. In general, this says that we may think of a

set of curves defined over some neighborhood either as

i.) a congruence of maps from λ ∈ R to the manifold, parameterized by the (nearby)

point on the manifold at which they begin, in the passive mode as described

above, or

ii.) a family of maps from the manifold to itself, parameterized by the real number λ,

which is then an active mode view of the same set of functions. In this case they

are referred to as a family of flows (of the manifold), and we can think of them in

the usual approach, via Taylor series, as defining the chart of coordinates to be used

along the flow in terms of the one where the flow began:

yµ = xαδµα + λ
d

dλ
ϕµ
λ(P ) + 1

2λ
2 d2

dλ2
ϕµ
λ(P ) + . . . ]; , (2.1)

where evaluating the derivatives at the point P means the same as saying that they

are evaluated at λ = 0.

Since these maps are completely invertible, the use of these maps allows us to pullback

or pushforward whatever tensor we want between, for instance, the tensor spaces over P and

those over Q, because we can always use the inverse of the maps if that is what is needed.

For example, let us consider two tensors of
[
1
1

]
, T defined at P and B defined at Q. Then we

may define the pushforward value for T, namely ϕ∗λT, as a tensor over Q, and, as well, the

pullback value for B, namely ϕ∗
λB, a tensor over P by the following schemes where we note

that one defines a tensor by giving its action on the appropriate numbers of tangent vectors

and 1-forms. Since these are
[
1
1

]
tensors, we need to have available over the manifold at the
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point Q a 1-form field and a tangent vector field, α∼ ∈ Λ1
|Q and ṽ ∈ T|Q , and then the same sort

of objects over the point P , namely β
∼ ∈ Λ1

|P and w̃ ∈ T|P . This allows us then to define the

pushforward of T and the pullback of B as follows:

(ϕ∗λT)(α∼, ṽ)
at Q

≡ T(ϕ∗
λα∼, (ϕ

−1
λ )∗ ṽ)

acting at P

=⇒ (ϕ∗λT)µα =

(
∂yµ

∂xν

)(
∂xβ

∂yα

)
Tν

β ;

(ϕ∗
λB)(σ∼, w̃)

at P

≡ B((ϕ−1
λ )∗σ∼, ϕ∗λw̃)
acting at Q

=⇒ (ϕ∗
λB)νβ =

(
∂xν

∂yµ

)(
∂yα

∂xβ

)
Bµ

α .

(2.2)

Now we consider the case where our tensor is defined over an entire neighborhood including

both P and Q, and the curve with tangent vector ξ̃ joining them, and Y is a tensor defined

over this entire neighborhood. We may now take this tensor as it is defined at Q and pull it

back to the tensor space over the point P . Will this pullback be equal to the original tensor

field Y defined in the tensor space over the point P . The answer is “probably not!” See the

figure below to visualize this better:

I apologize that the figure, unfortu-

nately, uses the symbol t for the pa-

rameter I am calling λ. Also P is

denoted by x, and Q by ϕt(x)
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Both the tensors ϕ∗
−λ(Y|ϕλ(P )

) and Y|P lie in the same tensor space, defined over P ;

therefore, we may certainly ask for their difference, which depends on λ, and is shown in the

figure as the vector which is the difference of these two quantities, both in the tensor space

over P , which we denote as

∆λY|P ≡ ϕ∗
−λ(Y|ϕλ(P )

)−Y|P .

We may then ask, for the given curve ξ̃, what is the first-order change of this sort, which we

will call the Lie derivative in the direction ξ̃. More precisely, we define the following tensor in

the (appropriate) tensor space at P :

L
ξ̃

Y

|P

≡ lim
λ→0

1

λ

{
[ϕ∗

−λ(Y|ϕλ(P )
)]|P −Y|P

}
. (2.3)

We shall see below that this is indeed a tensor of the same type as Y.

To evaluate this geometrically-based idea in terms of components, we first take the coor-

dinates of P as xµ, and then recall that Q = ϕλ(P ) lies along the path with tangent vector ξ̃,

so that

yµ ≡ ϕµ
λ[x(P )] = xµ(P ) + λ

d

dλ
ϕµ
λ(P ) + 1

2λ
2 d2

dλ2
ϕµ
λ(P ) + . . .

= xµ(P ) + λξµ(λ)
∣∣
P
+ 1

2λ
2 d

dλ
ξµ(λ)|P + . . . ,

(2.1′)

This allows us to think of the tensor fields in terms of a functional dependence on the coordi-

nates of the points at which they exist, so that we can represent YP as Y[x(P )]. Since we are

comparing two different vectors in the same vector space, with respect to the same basis set,

it is simplest if we look at the problem in terms of its components. Therefore, let us suppose,

again, the special case that Y is a
[
1
1

]
tensor, so that its components are Y ν

β , which gives us

Y ν
β |Q =−→ Y ν

β(x+ λξ) = Y ν
β(x) + λ ξ̃(Y ν

β)(x) +O(λ2) . (2.4a)

As well we have to effect the tensor transformations described above in Eq. (2.2). Since {yµ}

are coordinates at Q, along the curve with tangent vector ξ̃, we have

∂yµ

∂xν
= δµν + λ ξµ,ν +O(λ2) ,

∂xν

∂yµ
= δνµ − λ ξν,µ +O(λ2) . (2.4b)
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Applying the second line of Eqs. (2.2), for ϕ∗
−λ, to the first term in Eq. (2.4a), and bringing

along the second term there, and inserting this into the definition given in Eq. (2.3), taking

the limit gives us

L
ξ̃

Y µ
ν = ξη∂η Y

µ
ν − ξµ,η Y

η
ν + ξη,ν Y

µ
η . (2.4c)

More or less, simply as a mnemonic for remembering how this formulation works, we compare

its form to that of the covariant derivative of a tensor, Y, along the same direction, ξ̃, which

is

∇
ξ̃
Y µ

ν = Y µ
ν,ηξ

η + (Γµ
ρηξ

η)Y ρ
ν − (Γρ

νηξ
η)Y µ

ρ .

We see that the purely-algebraic format is to replace the contraction of the direction with the

connection, i.e., Γ∼
µ
ρ(ξ̃) = Γµ

ρηξ
η, by the negative of the derivative of the direction in which

the Lie derivative is being taken, i.e., by −ξµ,ρ.

It is then useful to go ahead and write down some specific, important examples, and

also to present them in both a form that is independent of choice of basis and one involving

coordinates explicitly. Therefore we begin with just the action on a function:

for f ∈ F , L
ξ̃

f = ξ̃(f) = ξη∂ηf = ξαf,α = ∇
ξ̃
f , (2.5)

so that we see—as is hopefully logical—that there are no differences between the Lie derivative,

the ordinary derivative operator, and the covariant derivative when acting on just a function.

We can, however, now go further and look again at the action on a vector field, say ṽ, and

also on a 1-form, say α∼:

for ṽ ∈ T , L
ξ̃

ṽ = ẽµ (ξ
ηvµ,η − ξµ,ηv

η) = [ξ̃ , ṽ] ;

for α∼ ∈ Λ1 , L
ξ̃

α∼ = ω∼
ν {ξµαν,µ + ξµ,ναµ} .

(2.6)

It is quite convenient that the form for the Lie derivative of a tangent vector simply takes the

form of the commutator of the two vector fields, which is completely coordinate- and basis-

independent. It would be very good if we also had a form like that for the Lie derivative of a
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1-form, which we now want to obtain. However, to obtain that form it is convenient to first

define the action of an arbitrary p-form on a single vector. We know that a p-forms needs p

vectors in order to give a number; therefore, if it is given just 1 vector it remains a p− 1-form,

i.e., it wants that many more vectors yet. In principle, one also needs to tell such a product

just where, in the list of p different desired vectors, this given vector will be placed. There are

two reasonably common places where it might be put, namely all the way to the left, or the

right, in the list—the only ones available for a 2-form. Therefore the so-called interior product,

or step product of a vector and a p-form has been created for this purpose:

ṽ ⌋ β∼ ≡ β
∼(ṽ, ·, . . . , ·) , β

∼⌊ ṽ ≡ β
∼(·, . . . , ·, ṽ) , (2.7)

where in each case the entries of · in the list of allowed objects for the p-form to act on has

simply not yet been given.

With that information in hand, now let’s consider the following calculations, using a coordinate

basis set:
d[α∼(ṽ)] = d(αµv

µ) = (αµ,ρv
µ + αµv

µ
,ρ)dx

ρ ,

ṽ ⌋ dα∼ = dα∼(ṽ, ·) = vµ(αρ,µ − αµ,ρ)dx
ρ ,

=⇒ d[α∼(ṽ)] + α∼(ṽ, ·) = (vµαρ,µ + αµv
µ
,ρ)dx

ρ = L
ṽ

α∼ ,

(2.8)

so that the last line of the equation just above provides us with a coordinate- and basis-free

way of calculating the Lie derivative of a 1-form, if and when that may be needed.

In particular this form allows us to prove a very useful theorem, namely that

The Lie derivative and the exterior derivative commute when

acting on p-forms.

L
ξ̃

β
∼ = ξ̃ ⌋ dβ∼ + d(ξ̃ ⌋ β∼) ,

=⇒ L
ξ̃

dβ∼ = d(ξ̃ ⌋ dβ∼) = d

{
L
ξ̃

β
∼ − d(ξ̃ ⌋ β∼)

}
= dL

ξ̃

β
∼ .

(2.9)

It is now also a desirable additional theorem to see that the definition of the Lie derivative is

unchanged when we exchange the partial derivatives in its definition for covariant derivatives.

10



The proof of this is somewhat complicated; therefore, to simplify the atual algebra, I will

perform the associated calculations in an ordinary (holonomic) coordinate basis for tangent

vectors and 1-forms. Nonetheless, since the final results will use covariant derivatives in a

totally basis-independent format, the final results are valid in any choice of basis whatsoever.

We give this particular example for our standard
[
1
1

]
tensor, Y, so that we see the method for

both contravariant and covariant indices:

ξηY µ
ν;η − ξµ;η Y

η
ν + ξη ;ν Y

µ
η = ξηY µ

ν,η − ξµ,η Y
η
ν + ξη,ν Y

µ
η

+ ξη
(
Γµ

ληY
λ
ν − Γλ

νηY
µ
λ

)
− Γµ

ληξ
λY η

ν + Γλ
ηνξ

ηY µ
λ

= ξη∂η Y
µ
ν − ξµ,η Y

η
ν + ξη,ν Y

µ
η = L

ξ̃

Y µ
ν ,

(2.10)

where we can see that all the terms with components of the connection simply cancel out.

As it is a very important special case of a tensor, which defines a Killing vector as was

noted on the first page of these notes, let us write out explicitly the Lie derivative of the metric,

using covariant derivatives:

L
ξ̃

gµν = ξηgµν;η + ξη ;µgην + ξη ;νgµη = (ξηgην);µ + (ξηgµη);ν = ξ(µ;ν) , (2.11)

which shows the fairly standard method of performing actual calculations looking for Killing

vectors, where the Lie derivative of the metric is simply proportional, again, to the metric.

Next we should consider the Lie derivative of the components of the connection. Since they

are not tensor indices, we should expect them to have a different form for the Lie derivative:

ϕ∗
λΓ

µ
νλ|P = Xµ

τ (X
−1)ην(X

−1)σλΓ
τ
ησ |P +Xµ

τ (X
−1)τ ν,λ|P ,

=⇒ L
ξ̃

Γµ
νλ = ξη Γµ

νλ,η − ξµ,τΓ
τ
νλ + ξτ,νΓ

µ
τλ + ξτ,λΓ

µ
ντ + (ξµ,ν),λ .

(2.12a)

Now we rewrite this second derivative in terms of a second covariant derivative plus whatever

extra terms are needed, and insert it into the calculation above:

ξµ;νλ = ξµ;ν,λ + Γµ
σλξ

σ
;ν − Γσ

νλξ
µ
;σ = ξµ,νλ + Γµ

σν,λξ
σ + Γµ

σνξ
σ
,λ + Γµ

σλξ
σ
;ν − Γσ

νλξ
µ
;σ

(2.12b)
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This gives us two pairs of terms which are simply the difference of the covariant derivative and

the ordinary derivative, which we replace by the form involving the connection, which results

in the following quite interesting result, involving the curvature tensor:

L
ξ̃

Γµ
νλ = ξµ;νλ + ξη

{
Γµ

ν[λ,η] + Γµ
τ [ηΓ

τ
νλ]

}
= ξµ;νλ − ξηRµ

νλη . (2.12c)

Since the curvature tensor has arisen, it is reasonable that we should also ask about its

Lie derivative. Following the rules above for arbitrary tensors, we may immediately write that

down:

L
ξ̃

Rµνλη = ξτRµνλη;τ + 2ξτ ;[µRτν]λη + ξτ ;[λRµντη] , (2.13)

so that the equations above give us the form for the Lie derivative of all the quantities of

interest for Killing vectors.

3. Implications from the existence of a Killing Vector

The existence of a Killing vector tells us immediately about the symmetries of the metric.

If, for instance, K̃ = ∂/∂q is a (true) Killing vector for some manifold, then it is always possible

to arrange a coordinate system, with q as one of the coordinates, so that the components of

the metric with respect to that coordinate basis do not depend on q. It should be noted that

this can be done for any collection of Killing vectors provided that they commute with one

another; otherwise, one must choose whichever one is desired. Therefore, for instance, in the

static, spherically-symmetric metric, we may choose coordinates so that gµν are independent

of φ and t, but may not also eliminate the dependence on θ.

To think a little bit more about that necessary dependence on θ, we note that if the

commutator of a pair of Killing vectors is not zero then the tangent vector that is defined by

that commutator is also a Killing vector. This is, in principle, a very useful way to generate

not-yet-found Killing vectors for a given metric.

Another very useful feature of Killing vectors is that they may be used to determine

“constants of the motion,” i.e., quantities that will be constant along any given geodesic. To
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see this, consider a Killing vector K̃ and a 4-velocity ũ, tangent to some geodesic motion. Then

it is claimed that the scalar quantity K̃ · ũ ≡ g(K̃, ũ) is constant along that motion:

ũ(K̃ · ũ) = uµ∇µ(K
ηgηλu

λ) = Kη uµ∇µuη + uλuµ∇µKλ = uλuµK(λ;µ) = 0 . (3.1)

4. Further conditions for the existence of a (conformal) Killing Vector

The symmetries that allow the existence of a Killing vector also put constraints on the

connections and curvatures of the manifold; or the values of the connections and curvatures

put additional constraints on the existence of a Killing vector, as one chooses to proceed. We

now proceed, therefore, to resolve the complete set of such constraints, which we think of as

“integrability conditions” for the existence of a Killing vector. For some given metric, the

determination of its Killing vectors is usually a question of the solution of a coupled set of

partial differential equations, it is clear that that set ought, in general, to have integrability

conditions. Whether they are satisfied or not is in fact a set of constraints on the connections

and curvatures.

The curvature tensor of a Riemannian manifold measures the lack of commutativity of

covariant derivatives, and also satisfies the first and second Bianchi identities. Considering ξ̃

as some possible Killing vector, these statements are simply formulated mathematically as the

three equations below:

ξµ;[νλ] = +Rη
µνλξη ⇐⇒ ξµ;[νλ] = −Rµ

ηνλξ
η ,

Rη
µνλ +Rη

νλµ +Rη
λµν = 0 ,

Rσλνµ;η +Rησνµ;λ +Rληνµ;σ = 0 .

(4.1)

We may insert into these identities the requirements for a conformal Killing vector, given
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on the first page, Eqs. (0.1). We begin by considering together the first two of Eqs. (4.1):

ξµ;νλ − ξµ;λν + ξν;λµ − ξν;µλ + ξλ;µν − ξλ;νµ = 0 ,

=⇒ ξµ;νλ + ξν;λν + ξλ;µν = χ,λgµν + χ,νgµλ + χ,µgλν ,

=⇒ ξµ;νλ = − ξν;λµ − ξλ;µν + χ;λgµν + χ;νgµλ + χ;µgλν

= ξλ;[νµ] + [−χ,µgνλ + χ,νgλµ + χ,λgµν ]

= Rη
λνµξη + [−χ,µgνλ + χ,νgλµ + χ,λgµν ] ,

(4.2)

which may be thought of as the first integrability condition for our original system. However,

using Eq. (2.12c), the definition of the Lie derivative for the connection, and multiplying by

gµη to raise the first index, we may rewrite this requirement in the following more geometric

form:

L
ξ
Γµ

νλ = gµη[−χ,ηgνλ + χ,νgλη + χ,λgην ] . (4.3)

This is an especially nice statement relative to the geometric meaning of the difference between

the cases of conformal Killing vectors, i.e., non-constant χ, and the holomorphic or true Killing

vectors, where χ is a constant, possibly zero.

if χ is constant then the connection is invariant under the dragging along curves

generated by that Killing vector.

We now inquire as to whether these integrability conditions have integrability conditions

of their own. We do this by considering again Eqs. (4.1), applying the relation between commu-

tators of covariant derivatives and curvature for the third covariant derivatives of our Killing

vector:

ξµ;ν[λη] = Rσ
µληξσ;ν +Rσ

νληξµ;σ . (4.4)

We may, however, also calculate the left-hand side of this equation by taking the covariant

derivative of our first integrability equations, Eq. (4.2), which gives:

ξµ;ν[λη] = Rσ
[λνµξσ;η] +Rσ

[λνµ;η]ξσ + [−χ;µ[ηgνλ] + χ;ν[ηgλ]µ + χ;[λη]gµν ] . (4.5)
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Noting that the very last term above vanishes, because χ is a scalar, we may equate the two

expressions for the commutator of the derivatives and obtain the following:

ξσ(Rσλνµ;η −Rσηνµ;λ)+ ξσ ;ηRσλνµ − ξσ ;λRσηνµ + ξσ ;νRσµνλ

+ ξµ;σR
σ
νηλ + χ;νηgλν − χ;νλgηµ − χ;µηgνλ + χ;µλgνη = 0 .

(4.6)

If we now intervene with the second Bianchi identity, and use the definition of the Lie derivative

of the curvature tensor, Eq. (8), we may rewrite the last equation in the following form:

L
ξ
Rηλνµ = 2χRηλνµ − χ;η[νgλµ] − χ;λ[µgην] , (4.7)

relating the Lie derivative of the curvature tensor to the second derivatives of the conformal

factor χ.

5. Specialization to Homothetic Killing Vectors

A homothetic symmetry requires that χ be constant, possibly zero of course, in which case

it would actually be a true Killing vector. We therefore now specialize to the constant case.

Specialization of the equations above gives us

L
ξ̃

gµν = 2χ gµν ,

L
ξ̃

Γµ
νλ =0 = L

ξ̃

Rµ
νλη .

(5.1)

The first requirement on the second line is simply a repeat of Eqs. (4.3) in the current

situation; however, it is not immediately obvious that the relation on the curvature given

in that line is consistent with the previous Eq. (4.7). In order to show that consistency we

consider how the raising, or lowering, of an index—via the metric—affects results for those

cases where the metric is not preserved by the Lie dragging, i.e., the homothetic cases. We

begin by determining the Lie derivative of the inverse metric:

0 = L
ξ̃

δµλ = L
ξ̃

(gµνgνλ) =

(
L
ξ̃

gµν

)
gνλ + gµνL

ξ̃

gνλ

=

(
L
ξ̃

gµν

)
gνλ + gµν2χ gνλ =

(
L
ξ̃

gµν

)
gνλ + 2χδµλ ,

=⇒ L
ξ̃

gµν = −2χ gµν .

(5.2)
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We may then use that to raise the index on the Lie derivative for the curvature:

L
ξ̃

Rµ
νλη = L

ξ̃

(gµσRσνλη) =

{
L
ξ̃

gµσ

}
Rσνλη + gµσ

{
L
ξ̃

Rσνλη

}
= −2χRµ

νλη + 2χ gµσRσνλη = 0 .

(5.3)

Following that line of calculations, it is also then worthwhile to consider various pieces of the

curvature tensor:

L
ξ̃

Rνη = L
ξ̃

Rµ
νµη = 0 ,

L
ξ̃

R = L
ξ̃

(gνηRνη) = −2χ gνηRνη = −2χR ,

and also L
ξ̃

Γµνη = L
ξ̃

(gµσΓ
σ
νη) = 2χΓµνη .

(5.4)
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