
The Kerr Metric—for a Rotating Black Hole

In Boyer-Lindquist coordinates the Kerr metric may be written in the following form,

ds2 = Σ

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 − dt2 +

2mr

Σ
(a sin2 θdφ− dt)2 ,

= Σ

(
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∆
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)
+

A

Σ
sin2 θ dφ2 − 2

2mar

Σ
sin2 θ dφ dt−

(
1− 2mr

Σ

)
dt2 ,

≡ gµν(r, θ) dr
µdrν ,

(1)

which describes the gravitational field exterior to a rotating black hole of mass m and angular

momentum per unit mass of amount a, pointing along the positive ẑ-direction. I also note that

the determinant of the metric satisfies g = −Σ2 sin2 θ.

It is reasonable to describe this system via a “locally, non-rotating,” (orthonormal) tetrad,

i.e., a LNRF—also called a ZAMO, because this observer has zero angular momentum—of the

following form:

ω∼
r =

√
Σ

∆
dr , ω∼

θ =
√
Σ dθ , ω∼

t =

√
Σ∆

A
dt ,

ω∼
φ =

√
A

Σ
sin θ dφ− 2mar sin θ√

ΣA
dt =

√
A

Σ
sin θ (dφ− ω dt) ,

 ω∼
µ̂ ≡ Y µ̂

α dxα

with


Σ ≡ r2 + (a cos θ)2 ,

∆ ≡ r2 + a2 − 2mr , ω ≡ 2mar

A
= −gφt

gtt
= − gφt

gφφ
,

A ≡ (r2 + a2)2 − a2∆ sin2 θ = (r2 + a2)Σ + 2ma2r sin2 θ = ∆Σ + 2mr(r2 + a2) .
(2)

On the other hand the associated, reciprocal basis of tangent vectors is

ẽr =

√
∆

Σ
∂r , ẽθ =

1√
Σ

∂θ , ẽφ =

√
Σ

A

1

sin θ
∂φ ,

ẽt =

√
A

Σ∆
(∂t + ω ∂φ) =

√
A

Σ∆
∂t +

2mar√
AΣ∆

∂φ ,

 ẽλ̂ ≡ Xβ
λ̂∂xβ , (3)

where the matrices Xβ
λ̂ and Y µ̂

α are inverse to each other. Moreover, it follows that for some

arbitrary 4-vector, ℓ̃, and its associated 1-form, ℓ∼, we have the following relations

ℓ̃ = ℓα∂xα = ℓµ̂ẽµ̂ , ℓ∼ = ℓβ dx
β = ℓν̂ ω∼

ν̂ , ℓλ̂ = Y λ̂
α ℓα , ℓµ̂ = Xβ

µ̂ℓβ .



where it is important to be careful as to when the summations are performed on the row, or

the column, index of the matrices.

After some considerable calculation, one finds that, relative to this choice of LNRF, it

is sufficient to have 8 functions, of r and θ, as well as m and a, in order to describe the

connections. We find that
Γ∼rθ

Γ∼rφ

Γ∼rt

Γ∼θφ

Γ∼θt

Γ∼φt

 =


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Σ∆
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−F −H 0 0


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

where


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Σ
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√
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√
∆
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√
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√
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∂r(log

√
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√
∆

Σ
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√
Σ∆/A) ,

G ≡ − 1√
Σ
∂θ(log

√
Σ/A) ,

cot θ√
Σ
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Σ
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(
log(

√
A/Σ sin θ)

)
,

F ≡ − A sin θ

2Σ3/2
∂rω , H = − A sin θ

2∆1/2Σ3/2
∂θω .

(4)

We may then go further, yet, and describe the curvature itself in terms of only 4 distinct

functions:

Rrθrθ = −Rtφtφ = −Q1 , Rrθφt = +Q2 ,

Rrtrt = −Rθφθφ = −Q1
2 + z

1− z
, Rrtθt = Rrφθφ = S Q2 ,

Rrtrφ = −Rθtθφ = S Q1 , Rrtθφ = −Q2
2 + z

1− z
,

Rθtθt = −Rrφrφ = Q1
1 + 2z

1− z
, Rrφθt = −Q2

1 + 2z

1− z
.

with


Q1 ≡ = mr(r2 − 3a2 cos2 θ)/Σ3 , Q2 ≡ ma cos θ(3r2 − a2 cos2 θ)/Σ3 ,

S ≡ 3a sin θ
√
∆(r2 + a2)/A , z ≡ ∆

(
a sin θ

r2 + a2

)2

.

(5)
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Geodesic Trajectories:

If ũ is the tangent vector field for a geodesic curve, then it may be related to the proper-

time derivative of the coordinates and to the standard notions for 3-velocity and γ factor as

follows:

γ ≡ ut̂ =

√
Σ∆

A

dt

dτ
, vi ≡ uî

ut̂
=−→


√
A

∆
dr
dτ√

A
∆

dθ
dτ

A sin θ
Σ
√
∆

(
dφ
dτ − ω

)
 . (6)

then the coordinates that describe that trajectory satisfy the following equations:

Σ
dr

dτ
= ±

√
Vr ≡ ±

√
T 2 −∆[(µr)2 + (L− aE)2 +Q] ,

Σ
dθ

dτ
= ±

√
Vθ ≡ ±

√
Q− [a2(µ2 − E2) + L2/(sin2 θ)] cos2 θ ,

Σ
dφ

dτ
= −[aE − L/(sin2 θ)] + aT/∆ ,

Σ
dt

dτ
= −a(aE sin2 θ − L) + (r2 + a2)T/∆ ,

T ≡ E(r2 + a2)− La , E = −pt , L = pφ ,

Q = p2θ + [a2(µ2 − p2t ) + p2φ/(sin
2 θ)] cos2 θ .

(7)

Here the quantities E, L, Q, and µ = 1 or 0 are constants of the motion; the first two are

caused by the obvious Killing vectors, ∂t and ∂φ while the third is caused by a non-obvious

Killing tensor and the fourth is simply the value that describes if the geodesic is timelike or

null.

Interesting Surfaces

There is an outer, and an inner, horizon, where grr becomes infinite, at

r± = m ±
√
m2 − a2 . (8)

Between these two horizons ∂r is timelike. However, there is also a surface of static limit,

at which gtt vanishes, so that ∂t becomes null at that point, and spacelike between these two

surfaces. The volume between this surface and the outer horizon is referred to as the ergosphere.
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Within the ergosphere, there are no timelike curves that do not rotate along with the star. The

inner horizon is a Cauchy horizon, and within it, ∂r again becomes spacelike. Lastly, there is

a true curvature singularity, at the boundary of the disc defined by Σ ≡ r2 + a2 cos2 θ = 0.

With proper acceleration one can avoid this singularity on a timelike path.
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