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Éanna É Flanagan1 and Scott A Hughes2

1 Center for Radiophysics and Space Research, Cornell University, Ithaca, NY
14853, USA
2 Department of Physics and Center for Space Research, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA
E-mail: flanagan@astro.cornell.edu and sahughes@mit.edu

New Journal of Physics 7 (2005) 204
Received 11 January 2005
Published 29 September 2005
Online at http://www.njp.org/
doi:10.1088/1367-2630/7/1/204

Abstract. Einstein’s special theory of relativity revolutionized physics by
teaching us that space and time are not separate entities, but join as ‘spacetime’.
His general theory of relativity further taught us that spacetime is not just a
stage on which dynamics takes place, but is a participant: the field equation
of general relativity connects matter dynamics to the curvature of spacetime.
Curvature is responsible for gravity, carrying us beyond the Newtonian conception
of gravity that had been in place for the previous two and a half centuries. Much
research in gravitation since then has explored and clarified the consequences of
this revolution; the notion of dynamical spacetime is now firmly established in
the toolkit of modern physics. Indeed, this notion is so well established that we
may now contemplate using spacetime as a tool for other sciences. One aspect
of dynamical spacetime—its radiative character, ‘gravitational radiation’—will
inaugurate entirely new techniques for observing violent astrophysical processes.
Over the next 100 years, much of this subject’s excitement will come from learning
how to exploit spacetime as a tool for astronomy. This paper is intended as a
tutorial in the basics of gravitational radiation physics.
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1. Introduction: spacetime and gravitational waves

Einstein’s special relativity [1] taught us that space and time are not simply abstract, external
concepts, but must in fact be considered measured observables, like any other quantity in physics.
This reformulation enforced the philosophy that Newton sought to introduce in laying out his
laws of mechanics [2]:

. . . I frame no hypotheses; for whatever is not reduced from the phenomena is to be
called an hypothesis; and hypotheses . . . have no place in experimental philosophy . . .
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Despite his intention to stick only with that which can be observed, Newton described space and
time using exactly the abstract notions that he otherwise deplored [3]:

Absolute space, in its own nature, without relation to anything external, remains always
similar and immovable

Absolute, true, and mathematical time, of itself, and from its own nature, flows equably
without relation to anything external.

Special relativity put an end to these abstractions: time is nothing more than that which
is measured by clocks, and space is that which is measured by rulers. The properties of space
and time thus depend on the properties of clocks and rulers. The constancy of the speed of
light as measured by observers in different reference frames, as observed in the Michelson–
Morley experiment, forces us inevitably to the fact that space and time are mixed into spacetime.
Ten years after his paper on special relativity, Einstein endowed spacetime with curvature and
made it dynamical [5]. This provided a covariant theory of gravity [6], in which all predictions
for physical measurements are invariant under changes in coordinates. In this theory, general
relativity, the notion of ‘gravitational force’is reinterpreted in terms of the behaviour of geodesics
in the curved manifold of spacetime.

To be compatible with special relativity, gravity must be causal: any change to a gravitating
source must be communicated to distant observers no faster than the speed of light, c. This
leads immediately to the idea that there must exist some notion of ‘gravitational radiation’. As
demonstrated by Schutz [7], one can actually calculate with surprising accuracy many of the
properties of gravitational radiation simply by combining a time-dependent Newtonian potential
with special relativity.

The first calculation of gravitational radiation in general relativity is due to Einstein.
His initial calculation [8] was ‘marred by an error in calculation’ (Einstein’s words), and
was corrected in 1918 [9] (albeit with an overall factor of two error). Modulo a somewhat
convoluted history (discussed in great detail by Kennefick [10]) owing (largely) to the
difficulties of analysing radiation in a nonlinear theory, Einstein’s final result stands today as the
leading-order ‘quadrupole formula’ for gravitational wave emission. This formula plays a role
in gravity theory analogous to the dipole formula for electromagnetic radiation, showing that
gravitational waves (hereafter abbreviated GWs) arise from accelerated masses exactly as
electromagnetic waves arise from accelerated charges.

The quadrupole formula tells us that GWs are difficult to produce—very large masses
moving at relativistic speeds are needed. This follows from the weakness of the gravitational
interaction. A consequence of this is that it is extremely unlikely there will ever be an interesting
laboratory source of GWs. The only objects massive and relativistic enough to generate detectable
GWs are astrophysical. Indeed, experimental confirmation of the existence of GWs has come from
the study of binary neutron star systems—the variation of the mass quadrupole in such systems
is large enough that GW emission changes the system’s characteristics on a timescale short
enough to be observed. The most celebrated example is the ‘Hulse–Taylor’ pulsar, B1913+16,
reported by Hulse and Taylor in 1975 [11]. Thirty years of observation have shown that the orbit
is decaying; the results match with extraordinary precision general relativity’s prediction for such
a decay due to the loss of orbital energy and angular momentum by GWs. For a summary of the
most recent data, see figure 1 of [12]. Hulse and Taylor were awarded the Nobel Prize for this

New Journal of Physics 7 (2005) 204 (http://www.njp.org/)

http://www.njp.org/


4 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

discovery in 1993. Since this pioneering system was discovered, several other double neutron
star systems ‘tight’ enough to exhibit strong GW emission have been discovered [13]–[16].

Studies of these systems prove beyond a reasonable doubt that GWs exist. What remains is to
detect the waves directly and exploit them—to use GWs as a way to study astrophysical objects.
The contribution to this Focus Issue by Aufmuth and Danzmann [21] discusses the challenges
and the method of directly measuring these waves. Intuitively, it is clear that measuring these
waves must be difficult—the weakness of the gravitational interaction ensures that the response
of any detector to gravitational waves is very small. Nonetheless, technology has brought us to
the point where detectors are now beginning to set interesting upper limits on GWs from some
sources [17]–[20]. The first direct detection is now hopefully not too far in the future.

The real excitement will come when detection becomes routine. We will then have an
opportunity to retool the ‘physics experiment’ of direct detection into the development of
astronomical observatories. Some of the papers appearing in this volume will discuss likely future
revolutions which, at least conceptually, should change our notions of spacetime in a manner
as fundamental as Einstein’s works in 1905 and 1915 (see, e.g., papers in this Focus Issue by
Ashtekar and Horowitz). Such a revolution is unlikely to be driven by GW observations—most
of what we expect to learn using GWs will apply to regions of spacetime that are well-described
using classical general relativity; it is highly unlikely that Einstein’s theory will need major
revisions prompted by GW observations. Any revolution arising from GW science will instead
be in astrophysics: mature GW measurements have the potential to study regions of the Universe
that are currently inaccessible to our instruments. During the next century of spacetime study,
spacetime will itself be exploited to study our Universe.

1.1. Why this paper?

As GW detectors have improved and approached maturity, many papers have been written
reviewing this field and its promise. One might ask: do we really need another one? As a partial
answer to this question, we note that R. Price requested this paper very nicely. More seriously,
our goal is to provide a brief tutorial on the basics of GW science, rather than a comprehensive
survey of the field. The reader who is interested in such a survey can find them in [22]–[30].
Other reviews on the basics of GW science can be found in [31, 32]; we also recommend the
dedicated conference procedings [33]–[35].

We assume that the reader has a basic familiarity with general relativity, at least at the level
of Hartle’s textbook [36]; thus, we assume the reader understands metrics and is reasonably
comfortable taking covariant derivatives. We adapt what Baumgarte and Shapiro [37] call
the ‘Fortran convention’ for indices: a, b, c . . . h denote spacetime indices which run over
0, 1, 2, 3 or t, x, y, z, while i, j, k, . . . , n denote spatial indices which run over 1, 2, 3. We use
the Einstein summation convention throughout—repeated adjacent indices in superscript and
subscript positions imply a sum:

uava ≡
∑

a

uava.

When we discuss linearized theory, we will sometimes be sloppy and sum over adjacent spatial
indices in the same position. Hence,

uivi ≡ uivi ≡ uivi ≡
∑

i

uivi
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is valid in linearized theory. (As we will discuss in section 2, this is allowable because, in
linearized theory, the position of a spatial index is immaterial in Cartesian coordinates.) A quantity
that is symmetrized on pairs of indices is written as

A(ab) = 1
2(Aab + Aba).

Throughout most of this paper, we use ‘relativist’s units’, in which G = 1 = c; mass, space and
time have the same units in this system. The following conversion factors are often useful for
converting to ‘normal’ units:

1second = 299 792 458 m � 3 × 108 m

1M� = 1476.63 m � 1.5 km

= 4.92549 × 10−6 seconds � 5 µseconds.

(1M� is one solar mass.) We occasionally restore factors of G and c to write certain formulae
in normal units.

Section 2 provides an introduction to linearized gravity, deriving the most basic properties
of GWs. Our treatment in this section is mostly standard. One aspect of our treatment that is
slightly unusual is that we introduce a gauge-invariant formalism that fully characterizes the
linearized gravity’s degrees of freedom. We demonstrate that the linearized Einstein equations
can be written as five Poisson-type equations for certain combinations of the spacetime metric,
plus a wave equation for the transverse-traceless components of the metric perturbation. This
analysis helps to clarify which degrees of freedom in general relativity are radiative and which
are not, a useful exercise for understanding spacetime dynamics.

Section 3 analyses the interaction of GWs with detectors whose sizes are small compared
to the wavelength of the GWs. This includes ground-based interferometric and resonant-mass
detectors, but excludes space-based interferometric detectors. The analysis is carried out in two
different gauges; identical results are obtained from both analyses. Section 4 derives the leading-
order formula for radiation from slowly moving, weakly self-gravitating sources, the quadrupole
formula discussed above.

In section 5, we develop linearized theory on a curved background spacetime. Many of the
results of ‘basic linearized theory’ (section 2) carry over with slight modification. We introduce
the ‘geometric optics’ limit in this section, and sketch the derivation of the Isaacson stress–energy
tensor, demonstrating how GWs carry energy and curve spacetime. Section 6 provides a very
brief synopsis of GW astronomy, leading the reader through a quick tour of the relevant frequency
bands and anticipated sources. We conclude by discussing very briefly some topics that we could
not cover in this paper, with pointers to good reviews.

2. The basic basics: gravitational waves in linearized gravity

The most natural starting point for any discussion of GWs is ‘linearized gravity’. Linearized
gravity is an adequate approximation to general relativity when the spacetime metric, gab, may
be treated as deviating only slightly from a flat metric, ηab:

gab = ηab + hab, ‖hab‖ � 1. (2.1)

Here ηab is defined to be diag(−1, 1, 1, 1) and ‖hab‖ means ‘the magnitude of a typical non-zero
component of hab’. Note that the condition ‖hab‖ � 1 requires both the gravitational field to
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be weak, and in addition constrains the coordinate system to be approximately Cartesian. We
will refer to hab as the metric perturbation; as we will see, it encapsulates GWs, but contains
additional, non-radiative degrees of freedom as well. In linearized gravity, the smallness of the
perturbation means that we only keep terms which are linear in hab—higher order terms are
discarded. As a consequence, indices are raised and lowered using the flat metric ηab. The metric
perturbation hab transforms as a tensor under Lorentz transformations, but not under general
coordinate transformations.

We now compute all the quantities which are needed to describe linearized gravity. The
components of the affine connection (Christoffel coefficients) are given by

�a
bc = 1

2η
ad(∂chdb + ∂bhdc − ∂dhbc) = 1

2(∂ch
a
b + ∂bh

a
c − ∂ahbc). (2.2)

Here ∂a means the partial derivative ∂/∂xa. Since we use ηab to raise and lower indices, spatial
indices can be written either in the ‘up’position or the ‘down’position without changing the value
of a quantity: f x = fx. Raising or lowering a time index, by contrast, switches sign: f t = −ft.
The Riemann tensor we construct in linearized theory is then given by

Ra
bcd = ∂c�

a
bd − ∂d�

a
bc = 1

2(∂c∂bh
a
d + ∂d∂

ahbc − ∂c∂
ahbd − ∂d∂bh

a
c). (2.3)

From this, we construct the Ricci tensor

Rab = Rc
acb = 1

2(∂c∂bh
c
a + ∂c∂ahbc − �hab − ∂a∂bh), (2.4)

where h = ha
a is the trace of the metric perturbation and � = ∂c∂

c = ∇2 − ∂2
t is the wave

operator. Contracting once more, we find the curvature scalar:

R = Ra
a = (∂c∂

ahc
a − �h) (2.5)

and finally build the Einstein tensor:

Gab = Rab − 1
2ηabR = 1

2(∂c∂bh
c
a + ∂c∂ahbc − �hab − ∂a∂bh − ηab∂c∂

dhc
d + ηab�h). (2.6)

This expression is a bit unwieldy. Somewhat remarkably, it can be cleaned up significantly
by changing the notation: rather than working with the metric perturbation hab, we use the
trace-reversed perturbation h̄ab = hab − 1

2ηabh. (Notice that h̄a
a = −h, hence the name ‘trace

reversed’.) Replacing hab with h̄ab + 1
2ηabh in equation (2.6) and expanding, we find that all terms

with the trace h are cancelled. What remains is

Gab = 1
2(∂c∂bh̄

c
a + ∂c∂ah̄bc − �h̄ab − ηab∂c∂

dh̄c
d). (2.7)

This expression can be simplified further by choosing an appropriate coordinate system,
or gauge. Gauge transformations in general relativity are just coordinate transformations. A
general infinitesimal coordinate transformation can be written as xa′ = xa + ξa, where ξa(xb) is
an arbitrary infinitesimal vector field. This transformation changes the metric via

h′
ab = hab − 2∂(aξb), (2.8)
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so that the trace-reversed metric becomes

h̄′
ab = h′

ab − 1
2ηabh

′ = h̄ab − 2∂(bξa) + ηab∂
cξc. (2.9)

A class of gauges that are commonly used in studies of radiation are those satisfying the Lorentz
gauge condition

∂ah̄ab = 0. (2.10)

(Note the close analogy to Lorentz gauge3 in electromagnetic theory, ∂aAa = 0, where Aa is the
potential vector.)

Suppose that our metric perturbation is not in Lorentz gauge. What properties must ξa satisfy
in order to impose Lorentz gauge? Our goal is to find a new metric h′

ab such that ∂ah̄′
ab = 0:

∂ah̄′
ab = ∂ah̄ab − ∂a∂bξa − �ξb + ∂b∂

cξc (2.11)

= ∂ah̄ab − �ξb. (2.12)

Any metric perturbation hab can therefore be put into a Lorentz gauge by making an infinitesimal
coordinate transformation that satisfies

�ξb = ∂ah̄ab. (2.13)

One can always find solutions to the wave equation (2.13), thus achieving Lorentz gauge.
The amount of gauge freedom has now been reduced from four freely specifiable functions
of four variables to four functions of four variables that satisfy the homogeneous wave equation
�ξb = 0, or, equivalently, to eight freely specifiable functions of three variables on an initial data
hypersurface.

Applying the Lorentz gauge condition (2.10) to the expression (2.7) for the Einstein tensor,
we find that all but one term vanishes:

Gab = − 1
2�h̄ab. (2.14)

Thus, in Lorentz gauges, the Einstein tensor simply reduces to the wave operator acting on the
trace-reversed metric perturbation (up to a factor −1/2). The linearized Einstein equation is
therefore

�h̄ab = −16πTab; (2.15)

in vacuum, this reduces to

�h̄ab = 0. (2.16)

Just as in electromagnetism, the equation (2.15) admits a class of homogeneous solutions which
are superpositions of plane waves:

h̄ab(x, t) = Re
∫

d3kAab(k)ei(k·x−ωt). (2.17)

Here, ω = |k|. The complex coefficients Aab(k) depend on the wavevector k but are independent
of x and t. They are subject to the constraint kaAab = 0 (which follows from the Lorentz gauge
condition), with ka = (ω, k), but are otherwise arbitrary. These solutions are gravitational waves.
3 Fairly recently, it has become widely recognized that this gauge was in fact invented by Ludwig Lorenz, rather
than by Hendrik Lorentz. The inclusion of the ‘t’ seems most likely due to confusion between the similar names; see
[38] for a detailed discussion. Following the practice of Griffiths ([39], p 421), we bow to the weight of historical
usage in order to avoid any possible confusion.
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2.1. Globally vacuum spacetimes: transverse traceless (TT) gauge

We now specialize to globally vacuum spacetimes in which Tab = 0 everywhere, and which are
asymptotically flat (for our purposes, hab → 0 as r → ∞). Equivalently, we specialize to the
space of homogeneous, asymptotically flat solutions of the linearized Einstein equation (2.15).
For such spacetimes one can, along with choosing Lorentz gauge, further specialize the gauge
to make the metric perturbation be purely spatial

htt = hti = 0 (2.18)

and traceless

h = hi
i = 0. (2.19)

The Lorentz gauge condition (2.10) then implies that the spatial metric perturbation is transverse:

∂ihij = 0. (2.20)

This is called the transverse-traceless gauge, or TT gauge. A metric perturbation that has been
put into TT gauge will be written as hTT

ab . Since it is traceless, there is no distinction between hTT
ab

and h̄TT
ab .

The conditions (2.18) and (2.19) comprise five constraints on the metric, while the residual
gauge freedom in Lorentz gauge is parametrized by four functions that satisfy the wave equation.
It is nevertheless possible to satisfy these conditions, essentially because the metric perturbation
satisfies the linearized vacuum Einstein equation. When the TT gauge conditions are satisfied
the gauge is completely fixed.

One might wonder why we would choose TT gauge. It is certainly not necessary; however,
it is extremely convenient, since the TT gauge conditions completely fix all the local gauge
freedom. The metric perturbation hTT

ab therefore contains only physical, non-gauge information
about the radiation. In TT gauge, there is a close relation between the metric perturbation and
the linearized Riemann tensor Rabcd (which is invariant under the local gauge transformations
(2.8) by equation (2.3)), namely

Ritjt = − 1
2 ḧ

TT
ij . (2.21)

In a globally vacuum spacetime, all non-zero components of the Riemann tensor can be obtained
from Ritjt via Riemann’s symmetries and the Bianchi identity. In a more general spacetime, there
will be components that are not related to radiation; this point is discussed further in section 2.2.

Transverse traceless gauge also exhibits the fact that gravitational waves have two
polarization components. For example, consider a GW which propagates in the z direction:
hTT

ij = hTT
ij (t − z) is a valid solution to the wave equation �hTT

ij = 0. The Lorentz condition
∂zh

TT
zj = 0 implies that hTT

zj (t − z) = constant. This constant must be zero to satisfy the condition
that hab → 0 as r → ∞. The only non-zero components of hTT

ij are then hTT
xx , hTT

xy , hTT
yx and

hTT
yy . Symmetry and the tracefree condition (2.19) further mandate that only two of these are

independent:

hTT
xx = −hTT

yy ≡ h+(t − z); (2.22)
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hTT
xy = hTT

yx ≡ h×(t − z). (2.23)

The quantities h+ and h× are the two independent waveforms of the GW (see figure 1).
For globally vacuum spacetimes, one can always satisfy the TT gauge conditions. To

see this, note that the most general gauge transformation ξa that preserves the Lorentz gauge
condition (2.10) satisfies �ξa = 0, from equation (2.12).A general solution to this equation can be
written as

ξa = Re
∫

d3kCa(k)ei(k·x−ωt) (2.24)

for some coefficients Ca(k). Under this transformation the tensor Aab(k) in equation (2.17)
transforms as

Aab → A′
ab = Aab − 2ik(aCb) + iηabk

dCd. (2.25)

Achieving the TT gauge conditions (2.20) and (2.19) therefore requires finding, for each k, a
Ca(k) that satisfies the two equations

0 = ηabA′
ab = ηabAab + 2ikaCa, (2.26)

0 = A′
tb = Atb − iCbkt − iCtkb + iδt

b(k
aCa); (2.27)

δt
b is the Kronecker delta—zero for b 	= t, unity otherwise.An explicit solution to these equations

is given by

Ca = 3Abcl
blc

8iω4
ka +

ηbcAbc

4iω4
la +

1

2iω2
Aabl

b, (2.28)

where ka = (ω, k) and la = (ω, −k).

2.2. Global spacetimes with matter sources

We now return to the more general and realistic situation in which the stress–energy tensor is
non-zero. We continue to assume that the linearized Einstein equations are valid everywhere
in spacetime and that we consider asymptotically flat solutions only. In this context, the metric
perturbation hab contains (i) gauge degrees of freedom; (ii) physical, radiative degrees of freedom
and (iii) physical, non-radiative degrees of freedom tied to the matter sources. Because of the
presence of the physical, non-radiative degrees of freedom, it is not possible in general to write
the metric perturbation in TT gauge. However, the metric perturbation can be split up uniquely
into various pieces that correspond to the degrees of freedom (i), (ii) and (iii), and the radiative
degrees of freedom correspond to a piece of the metric perturbation that satisfies the TT gauge
conditions, the so-called TT piece.

This aspect of linearized theory is obscured by the standard, Lorentz gauge formulation
(2.15) of the linearized Einstein equations. There, all the components of hab appear to be radiative,
since all the components obey wave equations. In this subsection, we describe a formulation of
linearized theory which focuses on gauge-invariant observables. In particular, we will see that
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only the TT part of the metric obeys a wave equation in all gauges. We show that the non-
TT parts of the metric can be gathered into a set of gauge-invariant functions; these functions
are governed by Poisson equations rather than wave equations. This shows that the non-TT
pieces of the metric do not exhibit radiative degrees of freedom. Although one can always
choose gauges like Lorentz gauge in which the non-radiative parts of the metric obey wave
equations and thus appear to be radiative, this appearance is a gauge artifact. Such gauge choices,
although useful for calculations, can cause one to mistake purely gauge modes for a truly physical
radiation.

Interestingly, the first analysis contrasting physical radiative degrees of freedom from purely
coordinate modes appears to have been performed by Eddington in 1922 [40]. Eddington was
somewhat suspicious of Einstein’s analysis [9], as Einstein chose a gauge in which all metric
functions propagated with the speed of light. Though the entire metric appeared to be radiative
(by construction), Einstein found that only the ‘transverse–transverse’pieces of the metric carried
energy. Eddington wrote:

Weyl has classified plane gravitational waves into three types, viz. (1) longitudinal-
longitudinal; (2) longitudinal-transverse; (3) transverse-transverse. The present
investigation leads to the conclusion that transverse-transverse waves are propagated
with the speed of light in all systems of co-ordinates. Waves of the first and second
types have no fixed velocity—a result which rouses suspicion as to their objective
existence. Einstein had also become suspicious of these waves (in so far as they occur
in his special co-ordinate system) for another reason, because he found that they convey
no energy. They are not objective, and (like absolute velocity) are not detectable by
any conceivable experiment. They are merely sinuosities in the co-ordinate system,
and the only speed of propagation relevant to them is “the speed of thought." . . . It is
evidently a great convenience in analysis to have all waves, both physical and spurious,
travelling with one velocity; but it is liable to obscure physical ideas by mixing them up
so completely. The chief new point in the present discussion is that when unrestricted
co-ordinates are allowed the genuine waves continue to travel with the velocity of light
and the spurious waves cease to have any fixed velocity.

Unfortunately, Eddington’s wry dismissal of unphysical modes as propagating with ‘the speed of
thought’ is often taken by skeptics (and crackpots) as applying to all gravitational perturbations.
Eddington in fact showed quite the opposite. We do so now using a somewhat more modern
notation; our presentation is essentially the flat-spacetime limit of Bardeen’s [41] gauge-invariant
cosmological perturbation formalism. A similar treatment can be found in the lecture notes by
Bertschinger [42].

We begin by defining the decomposition of the metric perturbation hab, in any gauge, into
a number of irreducible pieces. Assuming that hab → 0 as r → ∞, we define the quantities φ,
βi, γ , H , εi, λ and hTT

ij via the equations

htt = 2φ, (2.29)

hti = βi + ∂iγ, (2.30)

hij = hTT
ij + 1

3Hδij + ∂(iεj) +
(
∂i∂j − 1

3δij∇2
)
λ, (2.31)
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together with the constraints

∂iβi = 0 (one constraint), (2.32)

∂iεi = 0 (one constraint), (2.33)

∂ih
TT
ij = 0 (three constraints), (2.34)

δijhTT
ij = 0 (one constraint). (2.35)

and boundary conditions

γ → 0, εi → 0, λ → 0, ∇2λ → 0 (2.36)

as r → ∞. Here H ≡ δijhij is the trace of the spatial portion of the metric perturbation,
not to be confused with the spacetime trace h = ηabhab that we used earlier. The spatial
tensor hTT

ij is transverse and traceless, and is the TT piece of the metric discussed above
which contains the physical radiative degrees of freedom. The quantities βi and ∂iγ are the
transverse and longitudinal pieces of hti. The uniqueness of this decomposition follows from
taking a divergence of equation (2.30) giving ∇2γ = ∂ihti, which has a unique solution by the
boundary condition (2.36). Similarly, taking two derivatives of equation (2.31) yields the equation
2∇2∇2λ = 3∂i∂jhij − ∇2H , which has a unique solution by equation (2.36). Having solved for
λ, one can obtain a unique εi by solving 3∇2εi = 6∂jhij − 2∂iH − 4∂i∇2λ.

The total number of free functions in the parametrization (2.29)–(2.31) of the metric is
16: four scalars (φ, γ, H and λ), six vector components (βi and εi) and six symmetric tensor
components (hTT

ij ). The number of constraints (2.32)–(2.35) is six, so the number of independent
variables in the parametrization is 10, consistent with a symmetric 4 × 4 tensor.

We next discuss how the variables φ, βi, γ , H , εi, λ and hTT
ij transform under gauge

transformations ξa with ξa → 0 as r → ∞. We parametrize such gauge transformation as

ξa = (ξt, ξi) ≡ (A, Bi + ∂iC), (2.37)

where ∂iBi = 0 and C → 0 as r → ∞; thus Bi and ∂iC are the transverse and longitudinal pieces
of the spatial gauge transformation. The transformed metric is hab − 2∂(aξb); decomposing this
transformed metric into its irreducible pieces yields the transformation laws

φ → φ − Ȧ, (2.38)

βi → βi − Ḃi, (2.39)

γ → γ − A − Ċ, (2.40)

H → H − 2∇2C, (2.41)

λ → λ − 2C, (2.42)

εi → εi − 2Bi, (2.43)

hTT
ij → hTT

ij . (2.44)
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Gathering terms, we see that the following combinations of these functions are gauge-invariant:


 ≡ −φ + γ̇ − 1
2 λ̈, (2.45)

� ≡ 1
3(H − ∇2λ), (2.46)

�i ≡ βi − 1
2 ε̇i; (2.47)

hTT
ij is gauge-invariant without any further manipulation. In the Newtonian limit, 
 reduces to the

Newtonian potential 
N , while � = −2
N . The total number of free, gauge-invariant functions
is six: one function �; one function 
; three functions �i, minus one due to the constraint
∂i�i = 0; and six functions hTT

ij , minus three due to the constraints ∂ih
TT
ij = 0, minus one due to

the constraint δijhTT
ij = 0. This is in keeping with the fact that in general the 10 metric functions

contain six physical and four gauge degrees of freedom.
We would now like to enforce Einstein’s equation. Before doing so, it is useful to first

decompose the stress–energy tensor in a manner similar to that of our decomposition of the
metric. We define the quantities ρ, Si, S, P , σij, σi and σ via the equations

Ttt = ρ, (2.48)

Tti = Si + ∂iS, (2.49)

Tij = Pδij + σij + ∂(iσj) + (∂i∂j − 1
3δij∇2)σ, (2.50)

together with the constraints

∂iSi = 0, (2.51)

∂iσi = 0, (2.52)

∂iσij = 0, (2.53)

δijσij = 0, (2.54)

and boundary conditions

S → 0, σi → 0, σ → 0, ∇2σ → 0 (2.55)

as r → ∞. These quantities are not all independent. The variables ρ, P , Si and σij can be specified
arbitrarily; stress–energy conservation (∂aTab = 0) then determines the remaining variables S,
σ and σi via

∇2S = ρ̇, (2.56)

∇2σ = − 3
2P + 3

2 Ṡ, (2.57)

∇2σi = 2Ṡi. (2.58)
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We now compute the Einstein tensor from the metric (2.29)–(2.31). The result can be
expressed in terms of the gauge-invariant observables:

Gtt = −∇2�, (2.59)

Gti = − 1
2∇2�i − ∂i�̇, (2.60)

Gij = − 1
2�hTT

ij − ∂(i�̇j) − 1
2∂i∂j(2
 + �) + δij[ 1

2∇2(2
 + �) − �̈]. (2.61)

We finally enforce Einstein’s equation Gab = 8πTab and simplify using the conservation relations
(2.56)–(2.58); this leads to the following field equations:

∇2� = −8πρ, (2.62)

∇2
 = 4π(ρ + 3P − 3Ṡ), (2.63)

∇2�i = −16πSi, (2.64)

�hTT
ij = −16πσij. (2.65)

Notice that only the metric components hTT
ij obey a wave-like equation. The other

variables �, 
 and �i are determined by Poisson-type equations. Indeed, in a purely vacuum
spacetime, the field equations reduce to five Laplace equations and a wave equation:

∇2�vac = 0, (2.66)

∇2
vac = 0, (2.67)

∇2�vac
i = 0, (2.68)

�h
TT,vac
ij = 0. (2.69)

This manifestly demonstrates that only the hTT
ij metric components—the transverse, traceless

degrees of freedom of the metric perturbation—characterize the radiative degrees of freedom in
the spacetime. Although it is possible to pick a gauge in which other metric components appear
to be radiative, they will not be: their radiative character is an illusion arising due to the choice
of gauge or coordinates.

The field equations (2.62)–(2.65) also demonstrate that, far from a dynamic, radiating source,
the time-varying portion of the physical degrees of freedom in the metric is dominated by hTT

ij .
If we expand the gauge-invariant fields 
, �, �i and hTT

ij in powers of 1/r, then, at sufficiently
large distances, the leading-order O(1/r) terms will dominate. For the fields �, 
 and �i,
the coefficients of the 1/r pieces are simply the conserved mass

∫
d3x ρ or the conserved linear

momentum− ∫
d3x Si, from the conservation relations (2.56)–(2.58). Thus, the only time-varying
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piece of the physical degrees of freedom in the metric perturbation at order O(1/r) is the TT
piece hTT

ij . An alternative proof of this result is given in exercise 19.1 of Misner et al [4].
Although the variables 
, �, �i and hTT

ij have the advantage of being gauge-invariant, they
have the disadvantage of being non-local. Computation of these variables at a point requires
knowledge of the metric perturbation hab everywhere. This non-locality obscures the fact that
the physical, non-radiative degrees of freedom are causal, a fact which is explicit in Lorentz
gauge 4. On the other hand, many observations that seek to detect GWs are sensitive only to the
value of the Riemann tensor at a given point in space (see section 3). For example, the Riemann
tensor components Ritjt, which are directly observable by detectors such as LIGO, are given in
terms of the gauge-invariant variables as

Ritjt = − 1
2 ḧ

TT
ij + 
,ij + �̇(i,j) − 1

2�̈δij. (2.70)

Thus, at least certain combinations of the gauge-invariant variables are locally observable.

2.3. Local regions of spacetime

In the previous subsection we described a splitting of metric perturbations into radiative, non-
radiative and gauge pieces. This splitting requires that the linearized Einstein equations be valid
throughout the spacetime. However, this assumption is not valid in the real Universe: many
sources of GWs are intrinsically strong field sources and cannot be described using linearized
theory, and on cosmological scales the metric of our Universe is not close to the Minkowski
metric. Furthermore, the splitting requires a knowledge of the metric throughout all of spacetime,
whereas any measurements or observations can probe only finite regions of spacetime. For these
reasons it is useful to consider linearized perturbation theory in finite regions of spacetime, and
to try to define gravitational radiation in this more general context.

Consider therefore a finite volume V in space. Can we split up the metric perturbation hab in
V into radiative and non-radiative pieces? In general, the answer is no: within any finite region,
GWs cannot be distinguished from time-varying near-zone fields generated by sources outside
that region. One way to see this is to note that in finite regions of space, the decomposition of
the metric into various pieces becomes non-unique, as does the decomposition of vectors into
transverse and longitudinal pieces. (For example the vector (x2 − y2)∂z is both transverse and
longitudinal.) Alternatively, we note that within any finite vacuum region V , one can always find
a gauge which is locally TT, that is, a gauge which satisfies the conditions (2.18)–(2.20) within
the region. (This fact does not seem to be widely known, so we give a proof in appendix A.) In
particular, this applies to the static Coulomb-type field of a point source, as long as the source
itself is outside of V . Consequently, isolating the TT piece of the metric perturbation does not
yield just the radiative degrees of freedom within a local region—a TT metric perturbation may
also contain, for example, Coulomb-type fields.

Within finite regions of space, therefore, GWs cannot be defined at a fundamental level—
one simply has time-varying gravitational fields. However, there is a certain limit in which GWs
can be approximately defined in local regions, namely the limit in which the wavelength of
the waves is much smaller than length and timescales characterizing the background metric.

4 One way to see that the guage-invariant degrees of freedom are causal is to combine the vacuum wave equation
(2.16) for the metric perturbation with the expression (2.33) for the gauge-invariant Riemann tensor. This gives the
wave equation �Rαβγδ = 0.
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This definition of gravitational radiation is discussed in detail and in a more general context in
section 5. As discussed in that section, this limit will always be valid when one is sufficiently far
from all radiating sources.

3. Interaction of gravitational waves with a detector

The usual notion of ‘gravitational force’ disappears in general relativity, replaced instead by the
idea that freely falling bodies follow geodesics in spacetime. Given a spacetime metric gab and
a set of spacetime coordinates xa, geodesic trajectories are given by the equation

d2xa

dτ2
+ �a

bc

dxb

dτ

dxc

dτ
= 0, (3.1)

where τ is a proper time as measured by an observer travelling along the geodesic. By writing the
derivatives in the geodesic equation (3.1) in terms of coordinate time t rather than proper time
τ, and by combining the a = t equation with the spatial, a = j equations, we obtain an equation
for the coordinate acceleration:

d2xi

dt2
= −(�i

tt + 2�i
tjv

j + �i
jkv

jvk) + vi(�t
tt + 2�t

tjv
j + �t

jkv
jvk), (3.2)

where vi = dxi/dt is the coordinate velocity.
Let us now specialize to linearized theory, with the non-flat part of our metric dominated

by a GW in TT gauge. Further, let us specialize to non-relativistic motion for our test body. This
implies that vi � 1, and to a good approximation we can neglect the velocity-dependent terms
in equation (3.2):

d2xi

dt2
+ �i

tt = 0. (3.3)

In linearized theory and TT gauge,

�i
tt = �itt = 1

2

(
2∂th

TT
jt − ∂jh

TT
tt

) = 0 (3.4)

since hTT
at = 0. Hence, we find that d2xi/dt2 = 0.

Does this result mean that the GW has no effect? Certainly not! It just tells us that, in TT
gauge the coordinate location of a slowly moving, freely falling body is unaffected by the GW.
In essence, the coordinates move with the waves.

This result illustrates why, in general relativity, it is important to focus upon coordinate-
invariant observables—a naive interpretation of the above result would be that freely falling
bodies are not influenced by GWs. In fact, the GWs cause the proper separation between two
freely falling particles to oscillate, even if the coordinate separation is constant. Consider two
spatial freely falling particles, located at z = 0, and separated on the x-axis by a coordinate
distance Lc. Consider a GW in TT gauge that propagates down the z-axis, hTT

ab (t, z). The proper
distance L between the two particles in the presence of the GW is given by

L =
∫ Lc

0
dx

√
gxx =

∫ Lc

0
dx

√
1 + hTT

xx (t, z = 0)

�
∫ Lc

0
dx[1 + 1

2h
TT
xx (t, z = 0)] = Lc[1 + 1

2h
TT
xx (t, z = 0)]. (3.5)
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Notice that we use the fact that the coordinate location of each particle is fixed in TT gauge! In a
gauge in which the particles move with respect to the coordinates, the limits of integration would
have to vary. Equation (3.5) tells us that the proper separation of the two particles oscillates with
a fractional length change δL/L given by

δL

L
� 1

2h
TT
xx (t, z = 0). (3.6)

Although we used TT gauge to perform this calculation, the result is gauge-independent;
we will derive it in a different gauge momentarily. Notice that hTT

xx acts as a strain—a fractional
length change. The magnitude h of a wave is often referred to as the ‘wave strain’. The proper
distance we have calculated here is a particularly important quantity since it directly relates to
the accumulated phase which is measured by laser interferometric GW observatories (cf the
contribution by Danzmann in this volume). The ‘extra’ phase δφ accumulated by a photon that
travels down and back the arm of a laser interferometer in the presence of a GW is δφ = 4πδL/λ,
where λ is the photon’s wavelength and δL is the distance the end mirror moves relative to the
beam splitter5. We now give a different derivation of the fractional length change (3.6) based on
the concept of geodesic deviation. Consider a geodesic in spacetime given by xa = za(τ), where
τ is the proper time, with four velocity ua(τ) = dza/dτ. Suppose we have a nearby geodesic
xa(τ) = za(τ) + La(τ), where La(τ) is small. We can regard the coordinate displacement La as a
vector �L = La∂a on the first geodesic; this is valid to first order in �L. Without loss of generality,
we can make the connecting vector be purely spatial: Laua = 0. Spacetime curvature causes the
separation vector to change with time—the geodesics will move further apart or closer together,
with an acceleration given by the geodesic deviation equation

ub∇b(u
c∇cL

a) = −Ra
bcd[�z(τ)]ubLcud; (3.7)

see, e.g., [36], chapter 21. This equation is valid to linear order in La; fractional corrections
to this equation will scale as L/L, where L is the lengthscale over which the curvature
varies.

For application to GW detectors, the shortest such lengthscale L is the wavelength λ of
the GWs. Thus, the geodesic deviation equation will have fractional corrections of order L/λ.
For ground-based detectors L is � a few km, while λ � 3000 km (see section 6.1); thus the
approximation will be valid. For detectors with L � λ (e.g. the space-based detector LISA), the
analysis here is not valid and other techniques must be used to analyse the detector.

A convenient coordinate system for analysing the geodesic deviation equation (3.7) is the
local proper reference frame of the observer who travels along the first geodesic. This coordinate
system is defined by the requirements

zi(τ) = 0, gab(t, 0) = ηab, �a
bc(t, 0) = 0, (3.8)

which imply that the metric has the form

ds2 = −dt2 + dx2 + O

(
x2

R2

)
. (3.9)

5 This description of the phase shift holds only if L � λ, so that the metric perturbation does not change value very
much during a light travel time. This condition will be violated in the high-frequency regime for space-based GW
detectors; a more careful analysis of the phase shift is needed in this case [43].
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Here R is the radius of curvature of spacetime, given by R−2 ∼ ‖Rabcd‖. It also follows from the
gauge conditions (3.8) that proper time τ and coordinate time t coincide along the first geodesic,
that �u = ∂t and that La = (0, Li).

Consider now the proper distance between the two geodesics, which are located at xi = 0
and xi = Li(t). From the metric (3.9), we see that this proper distance is just |L| = √

LiLi,
up to fractional corrections of order L2/R2. For a GW of amplitude h and wavelength λ, we
have R−2 ∼ h/λ2, so the fractional errors are ∼hL2/λ2. (Notice that R ∼ L/

√
h—the wave’s

curvature scale R is much larger than the lengthscale L characterizing its variations.) Since we
are restricting attention to detectors with L � λ, these fractional errors are much smaller than
the fractional distance changes ∼h caused by the GW (equation (3.6)). Therefore, we can simply
identify |L| as the proper separation.

We now evaluate the geodesic deviation equation (3.7) in the local proper reference frame
coordinates. From the conditions (3.8), it follows that we can replace the covariant time-derivative
operator ua∇a with ∂/(∂t). Using �u = ∂t and La = (0, Li), we get

d2Li(t)

dt2
= −Ritjt(t, 0)Lj(t). (3.10)

Note that the key quantity entering into the equation, Ritjt, is gauge-invariant in linearized theory,
so we can use any convenient coordinate system to evaluate it. Using the expression (2.21) for
the Riemann tensor in terms of the TT gauge metric perturbation hTT

ij , we find that

d2Li

dt2
= 1

2

d2hTT
ij

dt2
Lj. (3.11)

Integrating this equation using Li(t) = Li
0 + δLi(t) with |δL| � |L0| gives

δLi(t) = 1
2h

TT
ij (t)L

j

0. (3.12)

This equation is ideal for analysing an interferometric GW detector. We choose Cartesian
coordinates such that the interferometer’s two arms lie along the x- and y-axes, with the beam
splitter at the origin. For concreteness, let us imagine that the GW propagates along the z-axis.
Then, as discussed in section 2.1, the only non-zero components of the metric perturbation are
hTT

xx = −hTT
yy = h+ and hTT

xy = hTT
yx = h×, where h+(t − z) and h×(t − z) are the two polarization

components. We take the ends of one of the interferometer’s two arms as defining the two nearby
geodesics; the first geodesic is defined by the beam splitter at x = 0, the second by the end-mirror.
From equation (3.12) we then find that the distances L = |L| of the arms’ ends from the beam
splitter vary with time as

δLx

L
= 1

2h+,
δLy

L
= − 1

2h+. (3.13)

(Here the subscripts x and y denote the two different arms, not the components of a vector.)
These distance changes are then measured via laser interferometry. Notice that the GW (which
is typically a sinusoidally varying function) acts tidally, squeezing along one axis and stretching
along the other. In this configuration, the detector is sensitive only to the + polarization of the
GW. The × polarization acts similarly, except that it squeezes and stretches along a set of axes
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+ Polarization X Polarization
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Figure 1. Lines of force for a purely + GW (left), and for a purely × GW (right).
Figure kindly provided by Kip Thorne; originally published in [44].

that are rotated with respect to the x and y axes by 45◦. The force lines corresponding to the two
different polarizations are illustrated in figure 1.

Of course, we do not expect nature to provide GWs that so perfectly align with our detectors.
In general, we will need to account for the detector’s antenna pattern, meaning that we will be
sensitive to some weighted combination of the two polarizations, with the weights depending
upon the location of a source on the sky, and the relative orientation of the source and the detector.
See [45], equations (104a,b) and associated text for further discussion.

Finally, in our analysis so far of detection, we have assumed that the only contribution
to the metric perturbation is the GW contribution. However, in reality time-varying near-zone
gravitational fields produced by sources in the vicinity of the detector will also be present. From
equation (3.10) we see that the quantity that is actually measured by interferometric detectors is
the spacetime–spacetime or electric-type piece Ritjt of the Riemann tensor (or more precisely the
time-varying piece of this within the frequency band of the detector). From the general expression
(2.70) for this quantity, we see that Ritjt contains contributions from both hTT

ij describing GWs,
and also additional terms describing the time-varying near-zone gravitational fields. There is
no way for the detector to separate these two contributions, and the time-varying near-zone
gravitational fields produced by motions of bedrock, air, human bodies, and tumbleweeds can
all contribute to the output of the detector and act as sources of noise [46]–[48].

4. The generation of gravitational waves: putting in the source

4.1. Slow-motion sources in linearized gravity

Gravitational waves are generated by the matter source term on the right-hand side of the
linearized Einstein equation

�h̄ab = −16πTab, (4.1)

cf equation (2.15) (presented here in Lorentz gauge). In this section we will compute the leading-
order contribution to the spatial components of the metric perturbation for a source whose internal
motions are slow compared to the speed of light (‘slow-motion sources’). We will then compute
the TT piece of the metric perturbation to obtain the standard quadrupole formula for the emitted
radiation.
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Equation (4.1) can be solved by using a Green’s function. A wave equation with source
generically takes the form

�f(t, x) = s(t, x), (4.2)

where f(t, x) is the radiative field, depending on time t and position x, and s(t, x) is a source
function. The Green’s function G(t, x; t′, x′) is the field which arises due to a delta function
source; it tells how much field is generated at the ‘field point’ (t, x) per unit source at the ‘source
point’ (t′, x′):

�G(t, x; t′, x′) = δ(t − t′)δ(x − x′). (4.3)

The field which arises from our actual source is then given by integrating the Green’s function
against s(t, x):

f(t, x) =
∫

dt′ d3x′ G(t, x; t′, x′)s(t′, x′). (4.4)

The Green’s function associated with the wave operator � is very well known (see, e.g. [49]):

G(t, x; t′, x′) = −δ(t′ − [t − |x − x′|/c])

4π|x − x′| . (4.5)

The quantity t − |x − x′|/c is the retarded time; it takes into account the lag associated with the
propagation of information from events at x to position x′. The speed of light c has been restored
here to emphasize the causal nature of this Green’s function; we set it back to unity in what
follows.

Applying this result to equation (4.1), we find

h̄ab(t, x) = 4
∫

d3x′ Tab(t − |x − x′|, x′)
|x − x′| . (4.6)

As already mentioned, the radiative degrees of freedom are contained entirely in the spatial
part of the metric, projected transverse and traceless. Firstly, consider the spatial part of the
metric:

h̄ij(t, x) = 4
∫

d3x′ T
ij(t − |x − x′|, x′)

|x − x′| . (4.7)

We have raised indices on the right-hand side, using the rule that the position of spatial indices
in linearized theory is irrelevant.

We now evaluate this quantity at large distances from the source. This allows us to replace
the factor |x − x′| in the denominator with r = |x|. The corresponding fractional errors scale as
∼L/r, where L is the size of the source; these errors can be neglected. We also make the same
replacement in the time argument of Tij:

Tij(t − |x − x′|, x′) ≈ Tij(t − r, x′). (4.8)
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Using the formula |x − x′| = r − nix′ i + O(1/r), where ni = xi/r, we see that the fractional
errors generated by the replacement (4.8) scale as L/τ, where τ is the timescale over which the
system is changing. This quantity is just the velocity of internal motions of the source (in units
with c = 1), and is therefore small compared to one by our assumption. These replacements give

h̄ij(t, x) = 4

r

∫
d3x′ T ij(t − r, x′), (4.9)

which is the first term in a multipolar expansion of the radiation field.
Equation (4.9) almost gives us the quadrupole formula that describes GW emission (at

leading order). To get the rest of the way there, we need to massage this equation a bit. The
stress–energy tensor must be conserved, which means ∂aT

ab = 0 in linearized theory. Breaking
this up into time and space components, we have

∂tT
tt + ∂iT

ti = 0, (4.10)

∂tT
ti + ∂jT

ij = 0. (4.11)

From this, it follows rather simply that

∂2
t T

tt = ∂k∂lT
kl. (4.12)

Multiply both sides of this equation by xixj. We first manipulate the left-hand side:

∂2
t T

ttxixj = ∂2
t (T

ttxixj). (4.13)

Next, manipulate the right-hand side of equation (4.12), multiplied by xixj:

∂k∂lT
klxixj = ∂k∂l(T

klxixj) − 2∂k

(
T ikxj + T kjxi

)
+ 2T ij. (4.14)

This identity is easily verified6 by expanding the derivatives and applying the identity ∂ix
j = δi

j.
We thus have

∂2
t (T

ttxixj) = ∂k∂l(T
klxixj) − 2∂k(T

ikxj + T kjxi) + 2T ij. (4.15)

This yields

4

r

∫
d3x′ Tij = 4

r

∫
d3x′ [

1
2∂

2
t (T

ttx′ix′j) + ∂k(T
ikx′j + T kjx′i) − 1

2∂k∂l(T
klx′ix′j)

]

= 2

r

∫
d3x′ ∂2

t (T
ttx′ix′j)

= 2

r

∂2

∂t2

∫
d3x′ T ttx′ix′j

= 2

r

∂2

∂t2

∫
d3x′ ρ x′ix′j. (4.16)

6 Although one of us (SAH) was unable to do this simple calculation while delivering lectures at a summer school
in Brownsville, TX. Never attempt to derive the quadrupole formula while medicated.
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In going from the first line to the second, we used the fact that the second and third terms under
the integral are divergences. Using Gauss’s theorem, they can thus be recast as surface integrals;
taking the surface outside the source, their contribution is zero. In going from the second line to
the third, we used the fact that the integration domain is not time-dependent, so we can take the
derivatives out of the integral. Finally, we used the fact that T tt is the mass density ρ. Defining
the second moment Iij of the mass distribution via

Iij(t) =
∫

d3x′ ρ(t, x′)x′ix′j, (4.17)

and combining equations (4.9) and (4.16) now gives

h̄ij(t, x) = 2

r

d2Iij (t − r)

dt2
. (4.18)

When we subtract the trace from Iij, we obtain the quadrupole moment tensor:

Iij = Iij − 1
3δijI, I = Iii. (4.19)

This tensor will prove handy shortly.
To complete the derivation, we must project out the non-TT pieces of the right-hand side

of equation (4.18). Since we are working to leading order in 1/r, at each field point x this
operation reduces to algebraically projecting the tensor perpendicularly to the local direction of
propagation n = x/r, and subtracting off the trace. It is useful to introduce the projection tensor,

Pij = δij − ninj. (4.20)

This tensor eliminates vector components parallel to n, leaving only transverse components.
Thus,

h̄T
ij = h̄klPikPjl (4.21)

is a transverse tensor. Finally, we remove the trace; what remains is

hTT
ij = h̄klPikPjl − 1

2PijPklh̄kl. (4.22)

Substituting equation (4.18) into (4.22), we obtain our final quadrupole formula:

hTT
ij (t, x) = 2

r

d2Ikl (t − r)

dt2
Pik(n)Pjl(n). (4.23)

4.2. Extension to sources with non-negligible self-gravity

Our derivation of the quadrupole formula (4.23) assumed the validity of the linearized Einstein
equations. In particular, the derivation is not applicable to systems with weak (Newtonian) gravity
whose dynamics are dominated by self-gravity, such as binary star systems7. This shortcoming

7 Stress–energy conservation in linearized gravity, ∂aTab = 0, forces all bodies to move on geodesics of the
Minkowski metric.
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of the above linearized-gravity derivation of the quadrupole formula was first pointed out by
Eddington. However, it is very straightforward to extend the derivation to encompass systems
with non-negligible self-gravity.

In full general relativity, we define the quantity h̄ab via

√−ggab = ηab − h̄ab, (4.24)

where ηab ≡ diag(−1, 1, 1, 1). When gravity is weak this definition coincides with our previous
definition of h̄ab as a trace-reversed metric perturbation. We impose the harmonic gauge condition

∂a(
√−ggab) = ∂ah̄

ab = 0. (4.25)

In this gauge, the Einstein equation can be written as

�flath̄
ab = −16π(T ab + tab), (4.26)

where �flat ≡ ηab∂a∂b is the flat-spacetime wave operator and tab is a pseudo-tensor that is
constructed from h̄ab. Taking a coordinate divergence of this equation and using the gauge
condition (4.25), shows that stress–energy conservation can be written as

∂a(T
ab + tab) = 0. (4.27)

Equations (4.25)–(4.27) are precisely the same equations as are used in the linearized-
gravity derivation of the quadrupole formula, except for the fact that the stress–energy tensor
T ab is replaced by T ab + tab. Therefore, the derivation of the last subsection carries over, with the
modification that the formula (4.17) for Iij is replaced by

Iij(t) =
∫

d3x′ [T tt(t, x′) + ttt(t, x′)]x′ix′j. (4.28)

In this equation the term ttt describes gravitational-binding energy, roughly speaking. For systems
with weak gravity, this term is negligible in comparison with the term T tt describing the rest-
masses of the bodies. Therefore, the quadrupole formula (4.23) and the original definition (4.17)
of Iij continue to apply to the more general situation considered here.

4.3. Dimensional analysis

The rough form of the leading GW field that we just derived, equation (4.23), can be deduced
using simple physical arguments. First, we define some moments of the mass distribution. The
zeroth moment is just the mass itself:

M0 ≡
∫

ρ d3x = M. (4.29)

(More accurately, this is the total mass-energy of the source.) Next, we define the dipole moment:

M1 ≡
∫

ρ xi d3x = MLi. (4.30)
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Li is a vector with the dimension of length; it describes the displacement of the centre of mass
from our chosen origin. (As such, M1 is clearly not a very meaningful quantity—we can change
its value simply by choosing a different origin.)

If our mass distribution exhibits internal motion, then moments of the mass current, ji = ρvi,
are also important. The first moment is the spin angular momentum:

S1 ≡
∫

ρvj xk εijk d3x = Si. (4.31)

Finally, we look at the second moment of the mass distribution:

M2 ≡
∫

ρxixj d3x = MLij, (4.32)

where Lij is a tensor with the dimension length squared.
Using dimensional analysis and simple physical arguments, it is simple to see that the first

moment that can contribute to GW emission is M2. Consider first M0. We want to combine M0

with the distance to our source, r, in such a way as to produce a dimensionless wavestrain h. The
only way to do this (bearing in mind that the strain should fall off as 1/r, and restoring factors
of G and c) is to put

h ∼ G

c2

M0

r
. (4.33)

Does this formula make sense for radiation? Not at all! Conservation of mass-energy tells us that
M0 for an isolated source cannot vary dynamically. This h cannot be radiative; it corresponds
to a Newtonian potential, rather than a GW.

How about the moment M1? In order to get the dimensions right, we must take one time
derivative:

h ∼ G

c3

d

dt

M1

r
. (4.34)

(The extra factor of c converts the dimension of the time derivative to space, so that the whole
expression is dimensionless.) Think carefully about the derivative of M1:

dM1

dt
= d

dt

∫
ρxi d3x =

∫
ρvi d3x = Pi. (4.35)

This is the total momentum of our source. Our guess for the form of a wave corresponding to
M1 becomes

h ∼ G

c3

P

r
. (4.36)

Can this describe a GW? Again, not a chance: the momentum of an isolated source must be
conserved. By boosting into a different Lorentz frame, we can always set P = 0. Terms like this
can only be gauge artifacts; they do not correspond to radiation. (Indeed, terms like (4.36) appear
in the metric of a moving black hole and correspond to the relative velocity of the hole and the
observer (see [50], chapter 5).)
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How about S1? Dimensional analysis tells us that radiation from S1 must take the form

h ∼ G

c4

d

dt

S1

r
. (4.37)

Conservation of angular momentum tells us that the total spin of an isolated system cannot
change, so we reject this term for the same reason that we rejected (4.33)—it cannot correspond
to radiation.

Finally, we examine M2:

h ∼ G

c4

d2

dt2

M2

r
. (4.38)

There is no conservation principle that allows us to reject this term. Comparing to equation
(4.23), we see that this is the quadrupole formula we derived earlier, up to numerical factors.

In ‘normal’units, the prefactor of this formula turns out to be G/c4—a small number divided
by a very big number. In order to generate interesting amounts of GWs, the quadrupole moment’s
variation must be enormous. The only interesting sources of GWs will be those which have very
large masses undergoing extremely rapid variation; even in this case, the strain we expect from
typical sources is tiny. The smallness of GWs reflects the fact that gravity is the weakest of the
fundamental interactions.

4.4. Numerical estimates

Consider a binary star system, with stars of mass m1 and m2 in a circular orbit with separation
R. The quadrupole moment is given by

Iij = µ(xixj − 1
3R

2δij), (4.39)

where µ = m1m2/(m1 + m2) is the binary’s reduced mass and x is the relative displacement,
with |x| = R. We use the centre-of-mass reference frame and choose the coordinate axes so
that the binary lies in the xy plane, so x = x1 = R cos �t, y = x2 = R sin �t and z = x3 = 0.
Let us further choose to evaluate the field on the z-axis, so that n points in the z-direction. The
projection operators in equation (4.23) then simply serve to remove the zj components of the
tensor. Bearing this in mind, the quadrupole formula (4.23) yields

hTT
ij = 2Ïij

r
. (4.40)

The quadrupole moment tensor is

Iij = µR2




cos2 �t − 1
3 cos �t sin �t 0

cos �t sin �t cos2 �t − 1
3 0

0 0 −1
3


 ; (4.41)

its second derivative is

Ïij = −2�2µR2




cos 2�t sin 2�t 0

−sin 2�t −cos 2�t 0

0 0 0


 . (4.42)
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The magnitude h of a typical non-zero component of hTT
ij is

h = 4µ�2R2

r
= 4µM2/3�2/3

r
. (4.43)

We used Kepler’s third law8 to replace R with powers of the orbital frequency � and the total
mass M = m1 + m2. For the purpose of our numerical estimate, we will take the members of the
binary to have equal masses, so that µ = M/4:

h = M5/3�2/3

r
. (4.44)

Finally, we insert numbers corresponding to plausible sources:

h � 10−21

(
M

2M�

)5/3 (
1 h

P

)2/3 (
1 kiloparsec

r

)

� 10−22

(
M

2.8M�

)5/3 (
0.01 second

P

)2/3 (
100megaparsecs

r

)
. (4.45)

The first line corresponds roughly to the mass, distance and orbital period (P = 2π/�) expected
for the many close binary white dwarf systems in our galaxy. Such binaries are so common that
they are likely to be a confusion-limited source of GWs for space-based detectors, acting in
some cases as an effective source of noise. The second line contains typical parameter values
for binary neutron stars that are on the verge of spiralling together and merging. Such waves are
targets for the ground-based detectors that have recently begun operations. The tiny magnitude
of these waves illustrates why detecting GWs is so difficult.

5. Linearized theory of gravitational waves in a curved background

At the most fundamental level, GWs can only be defined within the context of an approximation
in which the wavelength of the waves is much smaller than lengthscales characterizing the
background spacetime in which the waves propagate. In this section, we discuss perturbation
theory of curved spacetimes, describe the approximation in which GWs can be defined, and
derive the effective stress tensor which describes the energy content of GWs. The material in
this section draws on the treatments given in chapter 35 of Misner et al [4], section 7.5 of Wald
[51], and the review papers [31, 32].

5.1. Perturbation theory of curved vacuum spacetimes

Throughout this section we will for simplicity restrict attention to vacuum spacetime regions.
We consider a one-parameter family of solutions of the vacuum Einstein equation, parametrized
by ε, of the form

gab = gB
ab + εhab + ε2jab + O(ε3). (5.1)

8 In units with G = 1 and for circular orbits of radius R, R3�2 = M.
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Here gB
ab is the background metric; it was taken to be the Minkowski metric in sections 2, 4 and

2.2. Here we allow gB
ab to be any vacuum solution of the Einstein equations. The quantity hab

is the linear-order metric perturbation, as in the previous sections; jab is a second-order metric
perturbation which will be used in section 5.3. We can regard ε as a formal expansion parameter;
we set its value to unity at the end of our calculations.

The derivation of the linearized Einstein equation proceeds as before. Most of the formulae
for linearized perturbations of Minkowski spacetime continue to apply, with ηab replaced by gB

ab,
and with partial derivatives ∂a replaced by covariant derivatives with respect to the background,
∇B

a . Some of the formulae acquire extra terms involving coupling to the background Riemann
tensor.

Inserting equation (5.1) into the formula for connection coefficients gives

�a
bc = 1

2g
ad(∂cgdb + ∂bgdc − ∂dgbc) (5.2)

= 1
2(g

B ad − εhad)(∂cg
B
db + ε∂chdb + ∂bg

B
dc + ε∂bhdc − ∂dg

B
bc − ε∂dhbc) + O(ε2)

= �B a
bc + εδ�a

bc + O(ε2). (5.3)

Here �B a
bc are the connection coefficients of the background metric gB

ab, and the first-order
corrections to the connection coefficients are given by

δ�a
bc = − 1

2h
adgB

de�
B e

bc + 1
2g

Bad(∂chdb + ∂bhdc − ∂dhbc)

= 1
2g

Bad(∇B
c hdb + ∇B

b hdc − ∇B
d hbc), (5.4)

where ∇B
a is the covariant-derivative operator associated with the background metric.

Equation (5.4) can be derived more easily, at any given point in spacetime, by evaluating the
expression (5.2) in a coordinate system in which the background connection coefficients vanish
at that point, so that ∂a = ∇B

a . The result (5.4) for general coordinate systems then follows from
general covariance.

Next, insert the expansion (5.3) of the connection coefficients into the formula

Ra
bcd = ∂c�

a
bd − ∂d�

a
bc + �a

ce�
e
bd − �a

de�
e
bc (5.5)

for the Riemann tensor. Evaluating the result in a coordinate system in which �B a
bc = 0 at the

point of evaluation gives

Ra
bcd = ∂c�

B a
bd − ∂d�

B a
bc + ε(∂cδ�

a
bd − ∂dδ�

a
bc) + O(ε2)

= RBa
bcd + εδRa

bcd + O(ε2). (5.6)

Here RB a
bcd is the Riemann tensor of the background metric and δRa

bcd = ∂cδ�
a
bd − ∂dδ�

a
bc is the

linear perturbation to the Riemann tensor. It follows from general covariance that the expression
for δRa

bcd in a general coordinate system is

δRa
bcd = ∇B

cδ�
a
bd − ∇B

d δ�a
bc. (5.7)
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Using the expression (5.4) now gives

δRa
bcd = 1

2(∇B
c ∇B

b ha
d + ∇B

c ∇B
d ha

b − ∇B
c ∇B ahbd − ∇B

d ∇B
b ha

c − ∇B
d ∇B

c ha
b + ∇B

d ∇B ahbc). (5.8)

Contracting on the indices a and c yields the linearized Ricci tensor δRbd:

δRbd = − 1
2�Bhbd − 1

2∇B
d ∇B

b h + ∇B
a ∇B

(bh
a
d), (5.9)

where �B ≡ ∇B
a ∇B a, indices are raised and lowered with the background metric and h = ha

a.
Reversing the trace to obtain the linearized Einstein tensor δGbd , and writing the result in terms
of the trace-reversed metric perturbation

h̄ab = hab − 1
2g

B
abg

B cdhcd (5.10)

yields the linearized vacuum Einstein equation

0 = δGbd = − 1
2�Bh̄bd + RB

adbch̄
ac − 1

2g
B
bd∇B

a ∇B
c h̄ac + 1

2∇B
b ∇B

a h̄a
d + 1

2∇B
d ∇B

a h̄a
b. (5.11)

As in section 2, the linearized Einstein equation can be simplified considerably by a suitable
choice of gauge. Under a gauge transformation parametrized by the vector field ξa, the metric
transforms as

hab → h′
ab = hab − 2∇B

(aξb); (5.12)

the divergence of the trace-reversed metric perturbation thus transforms as

∇B ah̄′
ab = ∇B ah̄ab − �Bξb. (5.13)

We can enforce in the new gauge the transverse condition

∇B ah̄′
ab = 0 (5.14)

by requiring that ξb satisfies the wave equation �Bξb = ∇B ah̄ab. We can further specialize the
gauge to satisfy h′ = 0. Dropping the primes, the metric perturbation is thus traceless and
transverse:

∇B ahab = h = 0. (5.15)

In this gauge, the linearized Einstein equation (5.11) simplifies to

0 = δGbd = − 1
2�Bhbd + RB

adbch
ac. (5.16)

(Note, however, that one cannot in this context impose the additional gauge conditions h0a = 0
used in the definition of TT gauge for perturbations of flat spacetime.)

To see that the traceless condition h = 0 can be achieved, note that the trace transforms as

h → h′ = h − 2∇B aξa. (5.17)
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Therefore, it is sufficient to find a vector field ξa that satisfies �Bξa = 0 and

∇B aξa − h/2 = 0. (5.18)

We can choose initial data for ξa on any Cauchy hypersurface for which the quantity (5.18)
and also its normal derivative vanish. Since the quantity (5.18) satisfies the homogeneous wave
equation by equations (5.11) and (5.14), it will vanish everywhere.

The wave equation (5.16) differs from its flat spacetime counterpart (2.16) in two respects:
firstly, there is an explicit coupling to the background Riemann tensor; and secondly, there is
a coupling to the background curvature through the connection coefficients that appear in the
covariant wave operator �B. In the limit (discussed below) where the wavelength of the waves is
much smaller than the lengthscales characterizing the background metric, these couplings have
the effect of causing gradual evolution in the properties of the wave. These gradual changes can
be described using the formalism of geometric optics, which shows that GWs travel along null
geodesics with slowly evolving amplitudes and polarizations. See [31] for a detailed description
of this formalism. Outside the geometric optics limit, the curvature couplings in equation (5.16)
can cause the dynamics of the metric perturbation to be strongly coupled to the dynamics of the
background spacetime. An example of such coupling is the parametric amplification of metric
perturbations during inflation in the early Universe [52].

5.2. General definition of gravitational waves: the geometric optics regime

The linear perturbation formalism described in the last section can be applied to any perturbation
of any vacuum background spacetime. Its starting point is the separation of the spacetime metric
into a background piece plus a perturbation. In most circumstances, this separation is merely a
mathematical device and can be chosen arbitrarily; no unique separation is determined by local
physical measurements. [Although gB

ab and hab are uniquely determined once one specifies the
one parameter family of metrics gab(ε), a given physical situation will be described by a single
metric gab(ε0) for some fixed value of ε0 of ε, not by the one parameter family of metrics.]
However, in special circumstances, a unique separation into background plus perturbation is
determined by the local physical measurements, and it is only in this context that GWs can be
defined. Such circumstances arise when the wavelength λ of the waves is very much smaller than
the characteristic lengthscales L, characterizing the background curvature. In this case, one can
define the background metric and perturbation, to linear order, via

gB
ab ≡ 〈gab〉, (5.19)

εhab ≡ gab − gB
ab. (5.20)

Here the angular brackets 〈· · ·〉 denote an average over lengthscales large compared to λ but small
compared to L; a suitable covariant definition of such averaging has been given by Brill and Hartle
[53]. A useful analogy to consider is the surface of an orange, which contains curvatures on two
different lengthscales: An overall, roughly spherical background curvature (analogous to the
background metric), and a dimpled texture on small scales (analogous to the GW). The regime
λ � L is called the geometric optics regime.

We will argue below that the short-wavelength perturbation εhab gives rise to an effective
stress tensor of order ε2h2/λ2, where h is a typical size of hab. This effective stress tensor

New Journal of Physics 7 (2005) 204 (http://www.njp.org/)

http://www.njp.org/


29 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

contributes to the curvature of the background metric gB
ab. This contribution to the curvature

is �1/L2. It follows that ε2h2/λ2 � 1/L2, or

εh � λ

L
. (5.21)

Since we are assuming that λ � L, it follows that the short-wavelength piece εhab of the metric
is small compared to the background metric, and so we can use the perturbation formalism of
section 5.1. Consider now the splitting of the Riemann tensor into a background piece plus a
perturbation given by equation (5.6):

Rabcd = RB
abcd + εδRabcd + O(ε2). (5.22)

By the definition (5.19) of the background metric, it follows that gB
ab and RB

abcd vary only over
lengthscales �L, and therefore it follows that to a good approximation

〈RB
abcd〉 = RB

abcd. (5.23)

Hence the perturbation to the Riemann tensor can be obtained via

εδRabcd = Rabcd − 〈Rabcd〉, (5.24)

the same unique and local procedure as for the metric perturbation (5.20). This Riemann tensor
perturbation is often called the GW Riemann tensor; it is a tensor characterizing the GWs that
propagate in the background metric gB

ab.
The operational meaning of the GW fields εhab and εδRabcd follows directly from the

equivalence principle and from their meaning in the context of flat spacetime (section 2).
Specifically, suppose that P is a point in spacetime and pick a coordinate system in which
gB

ab = ηab and �B a
bc = 0 at P . Then we have

gab = ηab + O

(
x2

L2

)
+ εhab + O(ε2), (5.25)

where x is the distance from P . Therefore, within a spacetime region around P in which x � L,
the flat-spacetime perturbation theory and measurement analysis of section 2 can be applied.
Thus, the gravitational waveforms seen by observers performing local experiments will just
be given by components of the GW Riemann tensor in the observer’s local proper reference
frames.

We remark that the splitting of the metric into a background plus a linear perturbation
can sometimes be uniquely defined even in the regime λ ∼ L. Some examples are when
the background spacetime is static (e.g. perturbations of a static star), or homogeneous
(e.g. Friedman–Robertson–Walker cosmological models). In these cases the dynamic metric
perturbation are not actually GWs, although their evolution can be computed using the linearized
Einstein equation. For example, consider the evolution of a metric perturbation mode which is
parametrically amplified during inflation in the early Universe. At early times during inflation,
the mode’s wavelength λ is smaller than the Hubble scale (L); the mode is said to be ‘inside the
horizon’. Any excitation of the mode is locally measurable (although such modes are usually
assumed to start in their vacuum state). As inflation proceeds, the mode’s wavelength redshifts
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and becomes larger due to the rapid expansion of the Universe, and eventually becomes larger
than the Hubble scale L; the mode is then ‘outside the horizon’. At this point, excitations in the
mode are not locally measurable and are thus not GWs. Finally, after inflation ends, the mode
‘re-enters the horizon’ and excitations of the mode are locally measurable. The mode is now a
true GW once again.

Finally, we note that for perturbations of flat spacetime, the definition of GWs given here
does not always coincide with the definition in terms of the TT component of the metric given
in section 2.2. However, far from sources of GWs (the regime relevant to observations), the
two definitions do coincide. This is because the TT piece of the metric will vary on scales of
a wavelength λ which is short compared to the lengthscale ∼r over which other pieces of the
metric vary (except for other dynamic pieces of the metric such as the time-varying quadrupole
term in the gauge-invariant field 
; those pieces vary on short lengthscales but are unimportant
since they are smaller than the TT piece by a factor ∼λ2/r2 or smaller).

5.3. Effective stress–energy tensor of gravitational waves

Two major conceptual building blocks are needed for the derivation of the energy and momentum
carried by GWs [54]: the perturbation theory of section 5.1, generalized to second order in ε,
and the separation of lengthscales λ � L discussed in the previous subsection.

We start by discussing the second-order perturbation theory. By inserting the expansion
(5.1) into the vacuum Einstein equation, we obtain

0 = Gab = Gab[gB
cd] + εG

(1)

ab [hcd; gB
ef ] + ε2G

(1)

ab [jcd; gB
ef ] + ε2G

(2)

ab [hcd; gB
ef ] + O(ε3). (5.26)

Here Gab[gB
cd] is the Einstein tensor of the background metric, and G

(1)

ab [ . . . ; gB
ef ] is the linear

differential operator on metric perturbations giving the linear perturbation to the Einstein tensor
generated by a metric perturbation. The explicit expression for G

(1)

ab [hcd, g
B
ef ] is given by equation

(5.11). The term G
(2)

ab [hcd; gB
ef ] is the piece of the Einstein tensor that is quadratic in hab; it can

be computed by extending the computation of section 5.1 to one higher order, and is a sum of
terms of the form hab∇B

c ∇B
d hef and (∇B

a hbc)(∇B
d hef ) with various index contractions; see equation

(35.58b) of MTW [4]. It is worth recalling that jab is a second-order metric perturbation. We
must take the calculation to second order to compute the effective stress–energy tensor of the
waves, since an averaging is involved—the first-order contribution vanishes by the oscillatory
nature of the waves.

Equating to zero the coefficients of the different powers of ε, we obtain the vacuum Einstein
equation for the background spacetime

Gab[gB
cd] = 0, (5.27)

the linearized Einstein equation

G
(1)

ab [hcd; gB
ef ] = 0, (5.28)

together with the equation for the second-order metric perturbation jab

G
(1)

ab [jcd; gB
ef ] = −G

(2)

ab [hcd; gB
ef ]. (5.29)
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We now specialize to the geometric optics regime λ � L. We split the second-order metric
perturbation into a piece 〈jab〉 that is slowly varying, and a piece

�jab = jab − 〈jab〉 (5.30)

that is rapidly varying. The full metric can be now be written as

gab = (gB
ab + ε2〈jab〉) + (εhab + ε2�jab) + O(ε3), (5.31)

where the first term varies slowly on lengthscales ∼L and the second term varies rapidly on
lengthscales ∼λ. Consider next the average of the second-order Einstein equation (5.29). Using
the fact that the averaging operation 〈· · ·〉 commutes with derivatives, we get

G
(1)

ab [〈jcd〉; gB
ef ] = −〈G(2)

ab [hcd; gB
ef ]〉. (5.32)

Subtracting equation (5.32) from equation (5.27) gives an equation for �jab:

G
(1)

ab [�jcd] = −G
(2)

ab [hcd; gB
ef ] + 〈G(2)

ab [hcd; gB
ef ]〉. (5.33)

Equation (5.32) can be rewritten using equation (5.27) as9

Gab[gB
cd + ε2〈jcd〉] = 8πT

GW,eff
ab + O(ε3), (5.34)

where the effective GW stress–energy tensor is

T
GW,eff
ab = − 1

8π
〈G(2)

ab [hcd; gB
ef ]〉. (5.35)

In the effective Einstein equation (5.34), all the quantities vary slowly on lengthscales ∼L. The
left-hand side is the Einstein tensor of the slowly varying piece of the metric. The right-hand
side is the effective stress–energy tensor, obtained by taking an average of the quadratic piece of
the second-order Einstein tensor. It follows from equation (5.34) that T

GW,eff
ab is conserved with

respect to the metric gB
ab + ε2〈jab〉. In particular, to leading order in ε, it is conserved with respect

to the background metric gB
ab.

The effect of the GWs is thus to give rise to a correction 〈jab〉 to the background metric.
This correction is locally of the same order as �jab, the rapidly varying piece of the second-order
metric perturbation. However, any measurements that probe only the long-lengthscale structure
of the metric (e.g. measurements of the gravitating mass of a radiating source over timescales long
compared to λ) are sensitive only to 〈jab〉. Thus, when one restricts attention to long lengthscales,
GWs can thus be treated as any other form of matter source in general relativity. Typically 〈jab〉
grows secularly with time, while �jab does not.

A fairly simple expression for the effective stress–energy tensor can be obtained as follows.
Schematically, the effective stress–energy tensor has the form

T
GW,eff
ab ∼ &〈hab∇B

c ∇B
d hef 〉 + &〈(∇B

a hbc)(∇B
d hef )〉, (5.36)

9 Our derivation of the effective Einstein equation (5.34) requires the assumption ε2〈jab〉 � gB
ab, since we use

second-order perturbation theory. However, the final result is valid without this assumption [54]; the curvature
generated by the GWs can be comparable to the background curvature.
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where & means ‘a sum of terms obtained by taking various contractions of’. In this expression,
gradients scale as 1/λ, so ∇B

c ∇B
d ∼ 1/λ2. However, the commutator of two derivatives scales as

the background Riemann tensor, which is of order 1/L2. Therefore, up to corrections of order
λ2/L2 which can be neglected, one can freely commute covariant derivatives in the expression
(5.36). Also, the average of any total derivative will vanish in the limit λ � L if the averaging
lengthscale is taken to be

√
λL. Therefore, one can flip derivatives from one factor to another

inside the averages in equation (5.36), as in integration by parts. Using these manipulations, the
expression for the effective stress–energy tensor simplifies to [4, 54]

T
GW,eff
ab = 1

32π

〈∇B
a h̄cd∇B

b h̄cd − 1
2∇B

a h̄∇B
b h̄ − ∇B

a h̄bc∇B
d h̄cd − ∇B

b h̄ac∇B
d h̄cd

〉
. (5.37)

In gauges satisfying the transverse-traceless conditions (5.15), this reduces to

T
GW,eff
ab = 1

32π
〈∇B

a hcd∇B
b hcd〉. (5.38)

For example, for the plane wave propagating in the z direction in flat spacetime, given by

hxx = − hyy = h0 cos(ωt − ωz),

hab = 0 (all other components), (5.39)

the energy density and energy flux are given by

T tt = T tz = h2
0ω

2

16π
〈cos2(ωt − ωz)〉 = h2

0ω
2

32π
. (5.40)

If we restore factors of G and c, and insert numbers typical of bursts of waves that we hope to
detect, we get the energy flux

T tz = 1.5 mW m−2

(
h0

10−22

)2 (
f

1 kHz

)2

, (5.41)

where f = ω/(2π). Note that this is a large energy flux by astronomical standards, despite the
tiny value of h0; it is comparable to the flux of reflected sunlight from a full moon [32].

6. A brief survey of gravitational wave astronomy

Having now reviewed the basic theory and properties of GWs, we conclude this paper by very
briefly surveying the properties of important potential sources of GWs. Our goal is to give
some indication of the value that GWs may provide for astronomical observations; much of this
material is updated from a previous survey paper [29]. We note that since the focus of this paper
is intended to be the theory of GW sources (and that this paper is significantly longer than was
intended or requested), we are quite a bit more schematic in our treatment here than we have been
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in the rest of this paper. This final section is intended to be a very brief, somewhat superficial
survey, rather than a detailed review.

We begin by contrasting gravitational radiation with electromagnetic radiation, which forms
the basis for almost all current astronomical observations:

Electromagnetic waves interact strongly with matter; GWs do not. The weak interaction of GWs
is both blessing and curse: it means that they propagate from emission to Earth-bound observers
with essentially zero absorption, making it possible to probe astrophysics that is hidden or dark
to electromagnetic observations—e.g. the coalescence and merger of black holes, the collapse
of a stellar core and the dynamics of the early Universe. It also means that detecting GWs is
very difficult. Also, because many of the best sources are hidden or dark, they are very poorly
understood today—we know very little about what are likely to be some of the most important
sources of GWs.

Electromagnetic radiation typically has a wavelength smaller than the size of the emitting system,
and so can be used to form an image of the source. This is because electromagnetic radiation is
usually generated by moving charges in the environment of some larger source—e.g. an atomic
transition in interstellar gas, or emission from hot plasma in a stellar environment. By contrast,
the wavelength of gravitational radiation is typically comparable to or larger than the size of
the radiating source. GWs are generated by the bulk dynamics of the source itself—e.g. the
motion of neutron stars in a binary. As a consequence, GWs cannot be used to form an image:
the radiation simply does not resolve the generating system. Instead, GWs are best thought of
as analogous to sound—the two polarizations carry a stereophonic description of the source’s
dynamics.

Gravitons in a gravitational-wave burst are phase-coherent; photons in electromagnetic signals
are usually phase-incoherent. This arises from the fact that each graviton is generated from the
same bulk motion of matter or of spacetime curvature, while each photon is normally generated
by different, independent events involving atoms, ions or electrons. Thus GWs are similar to
laser light. We can take advantage of the phase coherence of GWs to enhance their detectability.
Matched filtering techniques for detecting GW bursts with well-modelled functional form (like
those generated by coalescing compact binaries) extend the distance to which sources can be
seen by a factor of roughly the square root of the number of cycles in the waveform, a significant
gain [45].

An extremely important consequence of this coherency is that the direct observable of
gravitational radiation is the strain h, a quantity that falls off with distance as 1/r. Most
electromagnetic observables are some kind of energy flux, and so fall off with a 1/r2 law;
measuring coherent GWs is analogous to measuring a coherent, 1/r electromagnetic radiation
field. This comparatively slow fall off with radius means that relatively small improvements in
the sensitivity of GW detectors can have a large impact on their science: doubling the sensitivity
of a detector doubles the distance to which sources can be detected, increasing the volume of the
Universe to which sources are measurable by a factor of 8. Every factor of 2 improvement in the
sensitivity of a GW observatory should increase the number of observable sources by about an
order of magnitude.
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In most cases, electromagnetic astronomy is based on the deep imaging of small fields of view:
observers obtain a large amount of information about sources on a small piece of the sky. GW
astronomy will be a nearly all-sky affair: GW detectors have nearly 4π steradian sensitivity to
events over the sky. A consequence of this is that their ability to localize a source on the sky
is not good by usual astronomical standards; but, it means that any source on the sky will be
detectable, not just sources towards which the detector is ‘pointed’. The contrast between the
all-sky sensitivity but poor angular resolution of GW observatories, and the pointed, high-angular
resolution of telescopes is very similar to the angular resolution contrast of hearing and sight,
strengthening the useful analogy of GWs with sound.

From these general considerations, we turn now to specifics. It is useful to categorize GW
sources (and the methods for detecting their waves) by the frequency band in which they radiate.
Broadly speaking, we may break the GW spectrum into four rather different bands: the ultra low-
frequency band, 10−18 � f � 10−13 Hz; the very low-frequency band, 10−9 � f � 10−7 Hz; the
low-frequency band, 10−5 � f � 1 Hz; and the high frequency band, 1 � f � 104 Hz.

For compact sources, the GW frequency band is typically related to the source’s size R

and mass M. Here the source size R means the lengthscale over which the source’s dynamics
vary; for example, it could be the actual size of a particular body or the separation of members
of a binary. The ‘natural’ GW frequency of such a source is fGW ∼ (1/2π)

√
GM/R3. Because

R � 2GM/c2 (the Schwarzschild radius of a mass M), we can estimate an upper bound for the
frequency of a compact source:

fGW(M) <
1

4
√

2π

c3

GM
� 104 Hz

(
M�
M

)
. (6.1)

This is a rather hard upper limit, since many interesting sources are quite a bit larger than 2GM/c2,
or else evolve through a range of sizes before terminating their emission at R ∼ 2GM/c2.
Nonetheless, this frequency gives some idea about the types of compact sources that are likely
to be important in each band—for example, high-frequency compact sources are of stellar mass
(several solar masses); low-frequency compact sources are thousands to millions of solar masses,
or else contain widely separated stellar mass bodies.

6.1. High frequency

The high-frequency band, 1 � f � 104 Hz, is targeted by the new generation of ground-based
laser interferometric detectors such as LIGO. (It also corresponds roughly to the audio band
of the human ear: when converted to sound, LIGO sources are audible to humans.) The low-
frequency end of this band is set by the fact that it is extremely difficult to prevent mechanical
coupling of the detector to ground vibrations at low frequencies, and probably impossible to
prevent gravitational coupling to ground vibrations, human activity and atmospheric motions
[46]–[48]. The high end of the band is set by the fact that it is unlikely any interesting GW
source radiates at frequencies higher than a few kilohertz. Such a source would have to be a
relatively low mass (�1M�) but extremely compact (cf equation (6.1)). There are no known
theoretical or observational indications that gravitationally collapsed objects in this mass range
exist.

The paper by Aufmuth and Danzmann in this volume [21] discusses the detectors
relevant to this frequency band in some detail; our discussion here is limited to a brief
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survey of these instruments. Several interferometric GW observatories are either operating
or being completed in the United States, Europe, Japan and Australia. Having multiple
observatories widely scattered over the globe is extremely important: the multiplicity gives
rise to cross-checks that increase detection confidence and also aids in the interpretation of
measurements. For example, sky location determination and concomitant measurement of the
distance to a source follows from triangulation of time-of-flight differences between separated
detectors.

The major interferometer projects are

• LIGO. The Laser Interferometer Gravitational-wave Observatory [55] consists of three
operating interferometers: a single 4 km interferometer in Livingston, Louisiana, as well as
a pair of interferometers (4 km and 2 km) in the LIGO facility at Hanford, Washington. The
sites are separated by roughly 3000 km and are situated to support coincidence analysis of
events.

• Virgo. Virgo is a 3 km French–Italian detector under construction near Pisa, Italy [56]. In
most respects, Virgo is quite similar to LIGO. A major difference is that Virgo employs a
very sophisticated seismic isolation system that promises extremely good low-frequency
sensitivity.

• GEO600. GEO600 is a 600 m interferometer constructed by a German–English collabor-
ation near Hanover, Germany [57]. Despite its shorter arms, GEO600 achieves sensitivity
comparable to the multi-kilometre instruments using advanced interferometry techniques.
This makes it an invaluable testbed for technology to be used in later generations of the
larger instruments, as well as enabling it to make astrophysically interesting measurements.

• TAMA300. TAMA300 is a 300 m interferometer operating near Tokyo. It has been in
operation for several years now [58]. The TAMA team is currently designing a 3 km
interferometer [59], building on their experiences with the 300 m instrument.

• ACIGA. The Australian Consortium for Interferometric Gravitational-Wave Astronomy is
currently constructing an 80 m research interferometer near Perth, Australia [60], hoping
that it will be possible to extend it to multi-km scale in the future. Such a detector would
likely be a particularly valuable addition to the worldwide stable of detectors, since all the
Northern Hemisphere detectors lie very near on a common plane. An Australian detector
would be far outside this plane, allowing it to play an important role in determining the
location of sources on the sky.

The LIGO, GEO and TAMA instruments have now been operating for several years;
see [17]–[20] for the results and upper limits from the first set of observations. All of
these detectors have or will have sensitivities similar to that illustrated in figure 2 (which
shows, in particular, the sensitivity goal of the first generation of LIGO interferometers). This
figure also shows the ‘facility limits’—the lowest noise levels that can be achieved even in
principle within an interferometer facility. The low-level facility limits come from gravity-
gradient noise: noise arising from gravitational coupling to fluctuations in the local mass
distribution (such as from seismic motions in the earth near the test masses [46], human
activity near the detector [47] and density fluctuations in the atmosphere [48]). At higher
frequencies, the facility limit arises from the residual gas (mostly hydrogen) in the interferometer
vacuum system—stray molecules of gas effectively cause stochastic fluctuations in the index of
refraction.
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Figure 2. Sensitivity goals of the initial LIGO interferometers, and facility limits
on the LIGO sensitivity (taken from [25]).

We now survey the more well-understood possible sources of measurable GWs in the high-
frequency band. We emphasize at this point that such a listing of sources can in no way be
considered comprehensive: we are hopeful that some GW sources may surprise us, as has been
the case whenever we have studied the Universe with a new type of radiation.

6.1.1. Coalescing compact binaries. Compact binaries—binary star systems in which each
member is a neutron star or black hole—are currently the best-understood sources of GWs.
Double neutron stars have been studied observationally since the mid-1970s; five such systems
[12]–[16], tight enough to merge within a few 108 or 109 years have been identified in our
Galaxy. Extrapolation from these observed binaries in the Milky Way to the Universe at large
[61]–[64] indicates that GW detectors should measure at least several and at most several hundred
binary neutron star mergers each year (following detector upgrades; the expected rate for initial
detectors is of the order of one event per several years, so that measurement of an event is plausible
but of fairly low probability). Population synthesis (modelling evolution of stellar populations)
indicates that the measured rate of binaries containing black holes should likewise be interestingly
large (perhaps even for initial detectors) [65]–[68]. The uncertainties of population synthesis
calculations are rather large, however, due to poorly understood aspects of stellar evolution
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and compact binary formation; data from GW detectors is likely to have a large impact on
this field.

6.1.2. Stellar core collapse. Core collapse in massive stars (the engine of type II supernova
explosions) has long been regarded as likely to be an important source of GWs; see, for example,
[69] for an early review. Stellar collapse certainly exhibits all of the necessary conditions for
strong GW generation—large amounts of mass (1–100M�) flow in a compact region (hundreds
to thousands of kilometres) at relativistic speeds (v/c � 1/5). However, these conditions are not
sufficient to guarantee strong emission. In particular, the degree of asymmetry in collapse is not
particularly well understood.

If the core of a star is very rapidly rotating during collapse, then instabilities may develop
which lead to strong GW emission [70]. If such instabilities develop, core collapse GWs could
be detected from events as far away as 10 Megaparsecs [71], a distance encompassing enough
galaxies that several events per year would be likely. Most models of massive stars, however,
indicate that such rapid rotation is not likely (e.g. [72]). Even without the growth of instabilities,
the asymmetric dynamics of core collapse is likely to lead to wave emission which would be
detectable within the Local Group of galaxies, with perhaps an event every few years detectable
by advanced interferometers [73]. The wave strength is likely to correlate strongly with the degree
of asymmetry in the supernova. If the GW event has an electromagnetic or neutrino counterpart,
we may gain a wealth of knowledge regarding the state of the precollapse core [74].

6.1.3. Periodic emitters. Periodic sources of GWs radiate at constant or nearly constant
frequency, like radio pulsars. In fact, the prototypical source of continuous GW is a rotating
neutron star, or GW pulsar. A non-axisymmetry in a neutron star crust (caused, for example, by
an oblateness that is misaligned with the star’s spin axis) will radiate GWs with characteristic
amplitude

h ∼ G

c4

I f 2ε

r
. (6.2)

Here I is the star’s moment of inertia, f is the wave frequency, r is the distance to the source
and ε is the dimensionless fractional distortion ε = (Ixx − Iyy)/I, where Iij is the moment of
inertia tensor. The crucial parameter ε characterizes the degree to which the star is distorted; it
is rather poorly understood. Upgraded interferometers in LIGO could set an upper limit on ε of
order 10−6 for sources at ∼10 kpc [27]. Various mechanisms have been proposed to explain how
a neutron star can be distorted to give a value of ε that is interesting as a GW source; see [75, 76]
for further discussion. Examples of some interesting mechanisms include misalignment of a
star’s internal magnetic field with the rotation axis [77] and distortion by accreting material from
a companion star [78, 79] (discussed in more detail below).

Whatever the mechanism generating the distortion, it is clear that ε will be small, so that
h ∼ 10−24 or smaller—quite weak. Measuring these waves will require coherently tracking their
signal for a large number of wave cycles. Coherently tracking N cycles boosts the signal-to-noise
ratio by a factor ∼√

N. This is actually fairly difficult, since the signal is strongly modulated by the
Earth’s rotation and orbital motion, ‘smearing’the waves’power across multiple frequency bands.
Searching for periodic GWs means demodulating the motion of the detector, a computationally
intensive problem since the modulation is different for every sky position. Unless one knows
in advance the position of the source, one needs to search over a huge number of sky position
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‘error boxes’, perhaps as many as 1013. One rapidly becomes computationally limited10. (Radio
pulsar searches face this same problem, with the additional complication that radio pulses are
dispersed by the interstellar medium. However, radio observers usually use shorter integration
times, and often target their searches on small regions of the sky, so their computational cost is
usually not as great.) For further discussion, see [80]; for ideas about doing hierarchical searches
that require less computer power, see [81].

As mentioned above, one particularly interesting mechanism for distorting a neutron star
comes from accretion of material from a companion star. Accretion provides a spin-up torque to
a neutron star,

(dJ/dt)spin-up ∼ R2�∗Ṁ (6.3)

(where J is the spin angular momentum, �∗ is the orbital frequency of the accreting matter as it
plunges onto the star, R is the star’s radius and Ṁ is the mass accretion rate). Without any kind
of braking mechanism, the neutron star would presumably spin-up until it reaches the ‘breakup
limit’, i.e., the spin frequency at which centrifugal forces would begin to break it apart; the
breakup frequency is typically around 2000–3000 Hz.

Observations have shown [82] that accreting neutron stars do, in fact, appear to have a
‘speed limit’—no accreting neutron star has been observed to spin faster than 619 Hz [83]. This
is consistent with the fact that the fastest radio pulsar11 has a spin period of 641 Hz [84]. This
suggests that some mechanism is removing angular momentum from the neutron star.A plausible
and very attractive possibility of how this angular momentum is removed is via GW emission.
Because the spin-down torque due to GW emission grows sharply with spin frequency,

(dJ/dt)spin-down ∝ �5 (quadrupole emission), (6.4)

the limiting spin obtained by balancing the torques (6.2) and (6.4) is relatively insensitive to
the mass accretion rate Ṁ. Such a mechanism was originally suggested by Wagoner [85], and
was revived by Bildsten [78] to explain the narrow clustering in the spin frequency of accreting
low-mass x-ray binaries (LMXBs). Various mechanisms could provide the spin-down torque—
Bildsten originally suggested that a quadrupole moment in the spinning star could be induced
by a thermally varying electron capture mechanism, but also noted that the r-mode instability
(see, e.g. [86] for a review) could be excited, leading to a similar spin-down law. Whatever
the mechanism, accreting neutron stars are obvious and very attractive targets for observing
campaigns with GW detectors, particularly given that their sky positions are well known.

10 This rather large number of patches on the sky is driven by the possible need to search for high-frequency pulsars
over several months of observation. The difference �f between the Doppler frequency shifts for two adjacent
sky patches separated by an angle δθ is of order �f ∼ v⊕fδθ/c, where v⊕ ∼ 3 × 104 ms−1 is the Earth’s orbital
velocity and f is the gravitational wave frequency. The phase error over an observation time Tobs is of order �f Tobs.
Demanding that this be less than unity yields δθ � c/(v⊕f T). The number of independent sky patches is then
Np ∼ 4πδθ−2 ∼ 4πv2

⊕f 2T 2
obs/c

2 ∼ 1013 for f = 1000 Hz and Tobs = 1/3 year. Fewer positions would be needed
if either the maximum frequency or the integration time is reduced; the figures given here set the maximum values
that are plausible. See [80] for more details.
11 The so-called ‘recycled’ radio pulsars spin at frequencies ∼ several hundred Hertz; they are believed to be the
fossils of accreting neutron stars.
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6.1.4. Stochastic backgrounds. Stochastic backgrounds are ‘random’GWs, arising from a large
number of independent, uncorrelated sources that are not individually resolvable. A particularly
interesting source of stochastic waves is the dynamics of the early Universe, which could
produce an all-sky GW background, similar to the cosmic microwave background; see [87]–
[89] for detailed reviews. Stochastic waves can be generated in the early Universe via a variety
of mechanisms: amplification of primordial fluctuations in the Universe’s geometry via inflation,
phase transitions as previously unified interactions separate, a network of vibrating cosmic
strings, or the condensation of a brane from a higher-dimensional space. These waves can actually
extend over a wide range of frequency bands; waves from inflation, in particular, span all bands,
from ultra low frequency to high frequency.

Stochastic backgrounds are usually idealized as being stationary, isotropic and homo-
geneous. They are thus characterized by their energy density per unit frequency, dρgw/df . This
is often parametrized in terms of the energy density per unit logarithmic frequency divided by
the critical energy density to close the Universe

�gw(f ) = 1

ρcrit

dρgw

d ln f
, (6.5)

where ρcrit = 3H2
0 /8πG is the critical density and H0 is the value of the Hubble constant today.

Different cosmological sources produce different levels of �gw(f ), centred in different bands.
In the high-frequency band, waves produced by inflation are likely to be rather weak: estimates
suggest that the spectrum will be flat across LIGO’s band, with magnitude �gw ∼ 10−15 at best
[90]. Waves from phase transitions can be significantly stronger, but are typically peaked around
a frequency that depends on the temperature T of the phase transition [87, 91]:

fpeak ∼ 100 Hz

(
T

105 TeV

)
. (6.6)

Because of their random nature, stochastic GWs look just like noise. Ground-based detectors
will measure stochastic backgrounds by comparing data at multiple sites and looking for
‘noise’ that is correlated [88, 92]. For comparing to a detector’s noise, one should construct
the characteristic stochastic wave strain,

h ∝ f−3/2
√

�gw(f )�f , (6.7)

where �f is the frequency band across which the measurement is made. For further discussion
and the proportionality constants, see [88]. Note that if �gw(f) is constant, this strain level
grows sharply with decreasing frequency—the most interesting limits are likely to be set by
measurements at low frequencies.

Early detectors will have fairly poor sensitivity to the background, constraining it to a level
�gw ∼ 5 × 10−6 in a band from about 100 to 1000 Hz. This is barely more sensitive than known
limits from cosmic nucleosynthesis [87]. Later upgrades will be significantly more sensitive,
able to detect waves with �gw ∼ 10−10, which is good enough to place interesting limits on
backgrounds from some phase transitions.

6.2. Low frequency

There is no hope of measuring GWs in the low-frequency band, 10−5 � f � 1 Hz, using a
ground-based instrument: even if it were possible to completely isolate one’s instrument from
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Figure 3. Orbital configuration of the LISA antenna.

local ground motions, gravitational coupling to fluctuations in the local mass distribution
ultimately limits the sensitivity to frequencies f � 1 Hz. Nonetheless, many extremely
interesting sources radiate in this band. The only way to measure these waves is to build a
detector in the quiet environment of space, far removed from low-frequency noise sources.

Such an instrument is currently being designed jointly by NASA in the United States and
ESA, the European Space Agency: LISA, the Laser Interferometer Space Antenna. If all goes
well, LISA will be launched into orbit in 2013 or so. LISA will be a laser interferometer, similar
in concept to the ground-based detectors: changes in the distance between widely separated test
masses will be monitored for GWs. However, LISA’s scale is vastly larger than that of its ground-
based cousins, and so details of its operations are quite different. In particular, LISA will have
armlengths L � 5 × 106 km. The three spacecrafts which delineate the ends of LISA’s arms are
placed into orbits such that LISA forms a triangular constellation orbiting the sun, inclined 60◦

with respect to the plane of the ecliptic and following the Earth with a 20◦ lag. This configuration
is sketched in figure 3. Since it essentially shares Earth’s orbit, the constellation orbits the sun
once per year, ‘rolling’ as it does so. This motion plays an important role in pinpointing the
position of sources by modulating the measured waveform—the modulation encodes the source
location and makes position determination possible.

Each of the three spacecrafts contains two optical assemblies, each of which houses a 1 W
laser and a 30 cm telescope. Because of the extreme lengths of the interferometer’s arms, Fabry–
Perot interferometry as in the ground-based detectors is not possible: diffraction spreads the
laser beam over a diameter of about 20 km as it propagates from one spacecraft to the other. A
portion of that 20 km wavefront is sampled with the telescope. That light is then interfered with
a sample of light from the on-board laser. Each spacecraft thus generates two interference data
streams; six signals are generated by the full LISA constellation. From these six signals, we can
construct the time variations of LISA’s armlengths and then build both GW polarizations. More
information and details can be found in [93].

Note that the LISA armlengths are not constant—as the constellation orbits, the distances
between the various spacecrafts vary by about 1% (including effects such as planetary
perturbations). These variations are far larger than the displacements produced by GWs, which
are of the order of picometers. However, these variations occur over timescales of the order of
months, and are extremely smooth and well modelled. It will not be difficult to remove them from
the data leaving clean data in the interesting frequency band. Picometer scale variations are not too
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difficult to measure in this band by gathering photons for timescales 10 seconds � T � 1 day.
Even though the bulk of the laser’s emitted power is lost by diffraction, enough photons are
gathered on this timescale that the phase shift due to the GW can be determined.

The GW signals are actually read out by monitoring the position of the so-called
‘gravitational sensor’ on each optical assembly; in particular, the position of a ‘proof mass’
which floats freely and constitutes the test mass for the LISA antenna is monitored. Because it
is freely floating, the proof mass follows a geodesic of the spacetime. MicroNewton thrusters
keep the bulk spacecraft centred on these proof masses, forcing the craft to follow their average
trajectory. In this way, the spacecrafts are isolated from low-frequency forces that could impact
the ability to measure GWs (e.g. variations in solar radiation pressure).

We now take a quick tour through some interesting LISA sources.

6.2.1. Periodic emitters. In the high-frequency band, the source of most periodic GWs is
expected to be isolated neutron stars. LISA’s periodic GWs will come primarily from binary star
systems in the Milky Way, primarily close white dwarf binaries. Most of these systems do not
generate waves strong enough to backreact significantly, so that their frequencies do not change
measurably over the course of LISA’s observations. Certain systems are well known in advance
to be sources of periodic waves for the LISA band. These sources are understood well enough
from optical observations that they may be regarded as ‘calibrators’—LISA should detect them
or else something is wrong!

Aside from these sources that are known in advance, it is expected that LISA will discover
a good number of binary systems that are too faint to detect with telescopes. Joint observations
by LISA and other astronomical instruments are likely to be more fruitful than observations with
a single instrument alone. For example, it is typically difficult for telescopes to determine the
inclination of a binary to the line of sight (a quantity needed to help pin down the masses of the
binary’s members). GWs measure the inclination angle almost automatically, since this angle
determines the relative magnitude of the polarizations h+ and h×.

The total number of periodic binaries radiating in LISA’s band is expected to be so large that
they will constitute a confused, stochastic background at low frequencies—there are likely to be
several thousand galactic binaries radiating in each resolvable frequency bin. This background
will constitute a source of ‘noise’ (from the standpoint of measuring other astrophysical sources)
that is larger than that intrinsic to the instrument noise at f � 10−3 Hz.

6.2.2. Coalescing binary systems containing black holes. Coalescing binary black hole systems
will be measurable by LISA to extremely large distances—essentially to the edge of the
observable Universe. Even if such events are very rare, the observed volume is enormous so
an interesting event detection rate is very likely. One class of such binaries consists of systems
in which the member holes are of roughly equal mass (∼105–108M�). These binaries can form
following the merger of galaxies (or pregalactic structures) containing black holes in their cores.
Depending on the mass of the binary, the waves from these coalescences will be detectable
to fairly large redshifts (z ∼ 5–10), possibly probing an early epoch in the formation of the
Universe’s structure [94].

The other major class of binary systems consists of relatively small bodies (black holes
with mass ∼10–100M�, neutron stars or white dwarfs) that are captured by larger black holes
(M∼105–107M�). These ‘extreme mass ratio’ binaries are created when the smaller body is
captured onto an extremely strong field, highly relativistic orbit, generating strong GWs. Such
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systems are measurable to a distance of a few Gigaparsecs if the in-spiralling body is a 10M�
black hole, and to a distance of a few hundred Megaparsecs if the body is a neutron star or
white dwarf. LISA will measure the waves that come from the last year or so of the smaller
body’s in-spiral, and thence probe the nature of the larger black hole’s gravitational field deep
within the hole’s potential. The rates for such events are not too well understood and depend
on the details of stellar dynamics in the cores of galaxies. Extremely conservative estimates
typically find that the rate of measurable events for LISA should be at least several per year
[95, 96]. Recent thinking suggests that these rates are likely to be rather underestimated—black
holes (which are measurable to much greater distances) are likely to dominate the measured rate,
perhaps increasing the rate to several dozen or several hundred per year [97].

Finally, it is worth noting that many events involving intermediate mass black holes—those
with masses in the band running from a few 102 to a few 105M�—would generate GWs in LISA’s
sensitive band. There is a large body of tentative evidence for the existence of black holes in this
mass band (see, e.g. [98] for a review), though as yet we have no ‘smoking gun’ unambiguous
signature for such a hole. If such black holes do exist and undergo mergers in sufficient numbers,
measurement of their waves will make possible a wealth of interesting tests of relativity [99],
and could untangle some of the mysteries surrounding supermassive black hole formation and
growth.

6.2.3. Stochastic backgrounds. As discussed in section 6.1.4, ground-based detectors can
measure a stochastic background by correlating the data streams of widely separated detectors.
LISA will use a slightly different technique: by combining its six data streams in an appropriate
way, one can construct an observable that is completely insensitive to GWs, measuring noise
only [100]. This makes it possible to distinguish between a noise-like stochastic background and
true instrumental noise, and thereby to learn about the characteristics of the background [101].

The sensitivity of LISA will not be good enough to set interesting limits on an inflationary
GW background: LISA will only reach �gw ∼ 10−11, about four orders of magnitude too large
to begin to say something about inflation [90]. However, LISA’s band is well placed for other
possible sources of cosmological backgrounds. In particular, an electroweak phase transition at
temperature T∼100–1000 GeV would generate waves in LISA’s band (cf equation (6.6)). These
waves are likely to be detectable if the phase transition is strongly first order (a scenario that does
not occur in the standard model, but is conceivable in extensions to the standard model [91]).

6.3. Very low frequency

The very low-frequency band, 10−9 � f � 10−7 Hz, corresponds to waves with periods ranging
from a few months to a few decades. Our best limits on waves in this band come from
observations of millisecond pulsars. First suggested by Sazhin [102] and then carefully analysed
and formulated by Detweiler [103], GWs can drive oscillations in the arrival times of pulses
from a distant pulsar. Millisecond pulsars are very good ‘detectors’ for measurements in this
band because they are exquisitely precise clocks. The range of frequencies encompassed by the
very low-frequency band is set by the properties of these radio pulsar measurements: the high end
of the frequency band comes from the need to integrate the radio pulsar data for at least several
months; the low end comes from the fact that we have only been observing millisecond pulsars
for a few decades. (One cannot observe a periodicity shorter than the span of one’s dataset.) A
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recent upper limit derived from this technique is [104]

�gwh2
100 < 9.3 × 10−8, 4 × 10−9 < f < 4 × 10−8 Hz (6.8)

(where the limit is a 95% confidence limit and h100 is the Hubble constant in units of
100 km second−1 Mpc−1).

The upper limit (6.8) already places constraints on some cosmological models (in particular
those involving cosmic strings). With further observations and the inclusion of additional pulsars
in the datasets, it is likely to improve quite soon. It is possible that the background in this band
will be dominated by many unresolved coalescing massive binary black holes [105]—binaries
that are either too massive to radiate in the LISA band, or else are in-spiralling towards the
LISA band en route to a final merger several centuries or millenia hence. Constraints from pulsar
observations in this band will remain an extremely important source of data on stochastic waves
in the future—the limits they can set on �gw are likely to be better than can be set by any of the
laser interferometric detectors.

6.4. Ultra low frequency

The ultra low-frequency band, 10−18 � f � 10−13 Hz, is better described by converting from
frequency to wavelength: for these waves, 10−5 H−1

0 � λ � H−1
0 , where H−1

0 ∼ 1010 light years
is the Hubble length today. Waves in this band oscillate on scales comparable to the size of
the Universe. They are most likely to be generated during inflation: quantum fluctuations in the
spacetime metric are parametrically amplified during inflation to relatively high amplitude. The
RMS amplitude to which the waves are amplified depends upon the energy scale Einfl of inflation:

hrms ∝
(

Einfl

mP

)2

, (6.9)

where mP is the Planck mass. Measuring these GWs would be a direct probe of inflationary
physics and would determine the inflation energy scale, which is currently unknown to within
many orders of magnitude. These waves have been described as the ‘smoking gun’ signature of
inflation [106].

During inflation, quantum fluctuations impact both the scalar field which drives inflation
(the inflaton φ) and the metric of spacetime. There exist independent scalar fluctuations (coupled
fluctuations in the inflaton and scalar-type fluctuations in the metric) and tensor fluctuations
(tensor-type fluctuations in the metric). The Fourier modes of these scalar and tensor perturbations
are describable as harmonic oscillators in the expanding Universe [107]. Each mode undergoes
zero-point oscillations in the harmonic potential. However, the potential itself is evolving due
to the expansion of the Universe. The evolution of this potential parametrically amplifies these
zero-point oscillations, creating quanta of the field [87]. During inflation, the Universe’s scale
factor a(t) grows faster than the Hubble length H−1, and so each mode’s wavelength likewise
grows faster than the Hubble length. The mode’s wavelength eventually becomes larger than the
Hubble length, or the mode ‘leaves the horizon’. After inflation ends the mode subsequently re-
enters the horizon. For gravitational perturbations, the number of quanta generated in the mode
is proportional to the factor by which the Universe expands between the two different horizon
crossings. Fluctuations in the inflaton seed density fluctuations, δρ(�r) = δφ(�r)(∂V/∂φ) (where
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V(φ) is the potential that drives the inflaton field). The tensor-type fluctuations in the spacetime
metric are GWs.

Density fluctuations and GWs both leave an imprint upon the cosmic microwave background
(CMB). First, each contributes to the CMB temperature anisotropy. However, even a perfectly
measured map of temperature anisotropy cannot really determine the contribution of GWs very
well because of cosmic variance: since we only have one Universe to observe, we are sharply
limited in the number of statistically independent influences upon the CMB that we can measure.
Large angular scales are obviously most strongly affected by this variance, and these scales are
the ones on which GW most importantly impact the CMB [108].

Fortunately, the scalar and tensor contributions also impact the polarization of the CMB.
These two contributions can be detangled from one another in a model-independent fashion.
This detangling uses the fact that the polarization tensor Pab(n̂) on the celestial sphere can be
decomposed into tensor harmonics. These harmonics come in two flavours, distinguished by their
parity properties: the ‘E-modes’ or ‘gradient-type’ harmonics YE

(lm)ab(n̂) (which pick up a factor
(−1)l under n̂ → −n̂), and the ‘B-modes’ or ‘curl-type’ harmonics YC

(lm)ab(n̂) (which pick up a
factor (−1)l+1 under n̂ → −n̂). These harmonics are constructed by taking covariant derivatives
on the sphere of the ‘ordinary’ spherical harmonics Ylm(n̂); see [109] for details. Because scalar
perturbations have no handedness, they only induce gradient-type polarization. GWs induce both
gradient- and curl-type polarization. Thus, an unambiguous detection of the curl-type polarization
would confirm production of GWs by inflation. (A caveat is that gravitational lensing can convert
E-modes to B-modes; this so-called ‘cosmic shear’ ultimately limits the sensitivity to GWs of
CMB polarization studies [110].)

7. Conclusion

This paper has summarized many of the most important topics in the theory of GWs. Due to
space and time limitations, we sadly were not able to cover all topics with which students of
this field should be familiar. In particular, we had hoped to include a discussion of strong field
relativity and GW emission. We confine ourselves, in this conclusion, to a (very) brief discussion
of important aspects of this subject for GW science, as well as pointers to the relevant literature.

Linearized theory as described in sections 2 and 5 is entirely adequate to describe the
propagation of GWs through our Universe and to model the interaction of GWs with our detectors.
In some cases, it is even adequate to describe the emission of waves from a source, as described
in section 4 (although for sources with non-negligible self-gravity such as binary star systems,
one has to augment linearized theory as described in section 4.2). However, many sources have
very strong self-gravity where the linearized treatment is completely inadequate. A variety of
formalisms have been developed to handle these cases.

• Post-Newtonian (PN) theory. PN theory is one of the most important of these formalisms,
particularly for modelling binary systems. Roughly speaking, PN theory analyses sources
using an iterated expansion in two variables: the ‘gravitational potential’, φ ∼ M/r, where
M is a mass scale and r characterizes the distance from the source; and velocities of internal
motion, v. (In linearized theory, we assume φ is small but place no constraints on v.)
Newtonian gravity emerges as the first term in the expansion, and higher-order corrections
are found as the expansion is iterated to ever higher order. Our derivation of the quadrupole
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formula in section 4.2 gives the leading order term in the PN expansion of the emitted
radiation. See Blanchet’s recent review [111] and references therein for a comprehensive
introduction to and explanation of this subject.

• Numerical relativity. Numerical relativity seeks to directly integrate Einstein’s equations on
a computer. Ideally, we would like to use a well-understood model of a GW source (e.g.
a binary system in which the field strengths are small enough that it is well described by
post-Newtonian theory) as ‘initial data’, and then numerically evolve the Einstein equations
from that point to some final equilibrium configuration. The form in which we normally
encounter Einstein’s equation in textbooks is not well suited to this task—the coordinate
freedom of general relativity means that there is no notion of ‘time’ built into the equation
Gab = 8πTab. One must introduce some notion of time for the concept of ‘initial data’ to
have any meaning. The four dimensions of spacetime are then split into 3+1 dimensions
of space and time. Having made this choice, Einstein’s equations take on a particular form
which is amenable to numerical computation.

We recommend the reviews of numerical relativity by Lehner [112] and by Baumgarte
and Shapiro [37]. For the purpose of our present discussion, it suffices to remark that it has
proven to be extremely difficult to model some of the most interesting and important GW
sources. In particular, the final stage of binary black hole mergers—regarded by many as
the ‘Holy Grail’ of numerical relativity—has proven to be quite a challenge.

• Perturbation theory. In some cases, GW sources can be modelled as nearly, but not quite,
identical to some exact solution of the Einstein field equations. For example, the end state
of a binary black hole coalescence must be a single black hole. As we approach this final
state, the system will be well-modelled as the Kerr black hole solution, plus some distortion
that radiates away. Another example is a binary consisting of a stellar mass compact body
orbiting a massive black hole. The binary’s spacetime will be well described as a single
black hole plus a perturbation due to the captured body. These cases can be nicely described
using perturbation theory: we treat the spacetime as some exact background, gB

ab, plus a
perturbation hab:

gab = gB
ab + hab. (7.1)

We are in the perturbative regime if ‖hab‖/‖gB
ab‖ � 1. This system can then be analysed by

expanding the Einstein equations for this metric and keeping terms to first order in hab (see
section 5.1 for details but without the matter source terms included).

This approach has proven to be particularly fruitful when the background spacetime
is that of a black hole. For the case of a Schwarzschild background, the derivation of the
full perturbation equations is rather straightforward; Rezzolla gives a particularly compact
and readable summary [113]. Perturbations of Kerr black holes are not nearly so simple
to describe, largely due to the lack of spherical symmetry—expanding the metric as in
equation (7.1) does not prove to be so fruitful as it is in the Schwarzschild case. Somewhat
miraculously, it turns out that progress can be made by expanding the curvature tensor: by
expanding the Riemann tensor as Rabcd = RB

abcd + δRabcd and taking an additional derivative
of the Bianchi identity,

∇eRabcd + ∇dRabec + ∇cRabde = 0, (7.2)

one can derive a wave-like equation for the perturbation δRabcd . This analysis was originally
performed by Teukolsky; see his original analysis [114] for details.
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Appendix A. Existence of TT gauge in local vacuum regions in linearized gravity

In this appendix, we show that one can always find TT gauges in local vacuum regions in
linearized gravity. More precisely, suppose that V is a connected open spatial region and (t0, t1)

is an open interval of time. Then one can find a gauge on the product R ≡ (t0, t1) × V that
satisfies htt = hti = δijhij = ∂ihij = 0, as long as Tab = 0 throughout R.

The proof involves a generalization of the gauge-invariant formalism of section 2.2 to finite
spacetime regions. We define a decomposition of the metric perturbation hab in terms of quantities
φ, βi, γ , hTT

ij , H , εi and λ using the same equations (2.29)–(2.35) as before. However we replace
the boundary conditions (2.36) with

γ|∂V =
∫ t

t0

dt φ|∂V , (A.1)

λ|∂V = 0, (A.2)

(∇2λ)|∂V = H|∂V, (A.3)

(n × ε)|∂V = 2
∫ t

t0

dt (n × β)|∂V, (A.4)

where n is the unit outward-pointing unit normal to ∂V . The reason for this particular choice
of boundary conditions will be explained below. These boundary conditions define a unique
decomposition of the metric within R.

Next, we compute how the variables φ, βi, γ , hTT
ij , H , εi and λ transform under general gauge

transformations. We use the same parametrization (2.37) of the gauge transformation as before,
except that we impose now the boundary condition C|∂V = 0. We find that the transformation
laws (2.38)–(2.44) are replaced by the following equations which contain some extra terms:

φ → φ − Ȧ, (A.5)

βi → βi − Ḃi − ∂iψ, (A.6)

γ → γ − A − Ċ + ψ, (A.7)

H → H − 2∇2C, (A.8)

λ → λ − 2C, (A.9)
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εi → εi − 2Bi + 2ηi − 2(t − t0)∂iψ, (A.10)

hTT
ij → hTT

ij − 2∂(iηj) + 2(t − t0)∂i∂jψ. (A.11)

Here ψ is the time-independent, harmonic function defined by ∇2ψ = 0 and ψ|∂V = A|∂V,t=t0 .
Similarly ηi is the time-independent, harmonic transverse vector defined by ∇2ηi = 0 and
(n × n)|∂V = n × B|∂V,t=t0 .

We define the variables 
, � and �i by the same equations (2.45)–(2.47) as before. From
the transformation laws (A.5)–(A.11) these variables are still gauge-invariant, while hTT

ij is no
longer gauge-invariant in the present context. Next, imposing the linearized vacuum Einstein
equations using the expressions (2.59)–(2.61) yields

∇2� = 0, ∇2�i = −2∂i�̇, ∇2
 = 3
2�̈ (A.12)

in V . The boundary conditions (A.1)–(A.4) together with the definitions (2.45)–(2.47) imply that
the boundary conditions on the gauge-invariant variables are


|∂V = �|∂V = �i
|∂V = 0. (A.13)

(This is why we choose those particular boundary conditions.) Therefore, all the gauge-invariant
variables vanish, � = 
 = �i = 0 in R.

It is now straightforward to show that one can choose a gauge in which φ = βi = γ = H =
εi = λ = 0. From the transformation laws (A.5)–(A.11), we can choose C to make λ = 0, choose
Ȧ to make φ = 0 and choose Ḃi to make βi = 0. The residual gauge freedom is then parametrized
by functions A and Bi that are time-independent. Next, from equation (A.13) together with the
definitions (2.45)–(2.47) it follows that

0 = � = 1
3H, (A.14)

0 = 
 = −2γ̇, (A.15)

0 = �i = − 1
2 ε̇i. (A.16)

Thus the only remaining non-zero pieces of the metric other than the TT piece are γ and εi,
and these are both time-independent. Finally, we can use the residual gauge freedom given by
time-independent functions A and Bi to set γ and εi to zero, by equations (A.7) and (A.10). (For
this purpose A and Bi will vanish on ∂V , by equations (A.1) and (A.4), so ψ and ηi vanish.)

References

[1] Einstein A 1905 On the electrodynamics of moving bodies Ann. Phys. 17 891
[2] Newton I 1687 Philosophiae Naturalis Principia Mathematica 2nd edn (London: Streater); from the General

Scholum added at the end of the 3rd book in the 2nd edn of 1713
[3] Newton I 1687 Philosophiae Naturalis Principia Mathematica 1st edn (London: Streater). All quotes from

the Principia are taken from [4], Box 1.10
[4] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman)

New Journal of Physics 7 (2005) 204 (http://www.njp.org/)

http://www.njp.org/


48 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[5] Einstein A 1915 On the general theory of relativity Sitzungsberichte Preußische Akademie der Wissenschaften
Berlin 778 (1915) (English translation in Math. Phys.) 799 (1915)

[6] EinsteinA 1915 On the field equations of gravitation Sitzungsberichte Preußische Akademie derWissenschaften
Berlin (Math. Phys.) 844 (1915)

[7] Schutz B F 1984 Gravitational waves on the back of an envelope Am. J. Phys. 52 412
[8] Einstein A 1916 Approximative integration of the field equations of gravitation Sitzungsberichte Preußische

Akademie der Wissenschaften Berlin (Math. Phys.) 688
[9] Einstein A 1918 On gravitational waves Sitzungsberichte Preußische Akademie der Wissen-schaften Berlin

(Math. Phys.) 154
[10] Kennefick D 1997 Controversies in the history of the radiation reaction problem in general relativity PhD

Thesis (part II), California Institute of Technology; short version available as Preprint gr-qc/9704002
[11] Hulse R A and Taylor J H 1975 Discovery of a pulsar in a binary system Astrophys. J. 195 L51
[12] Weisberg J M and Taylor J H 2004 Relativistic binary pulsar B1913+16 thirty years of observations and

analysis Binary Radio Pulsars, Proc. Aspen Conf, ASP Conf. Series ed F A Rasio and I H Stairs, at press
(Preprint astro-ph/0407149)

[13] Stairs I H, Thorsett S E, Taylor J H and Wolszczan A 2002 Studies of the relativistic binary pulsar PSR
B1534+12. I. Timing analysis Astrophys. J. 581 501

[14] Deich W T S and Kulkarni S R 1996 The masses of the neutron stars in M15C Compact Stars in Binaries,
Proc. IAU Symp. 165 ed J van Paradijs, E P J van den Heuvel and E Kuulkers (Dordrecht: Kluwer Academic)
p 279

[15] Burgay M et al 2003 An increased estimate of the merger rate of double neutron stars from observations of a
highly relativistic system Nature 426 531

[16] Faulker A J et al 2004 PSR J1756-2251: a new relativistic double neutron star system Astrophys. J. in press
(Preprint astro-ph/0411796)

[17] Abbott B et al 2004 Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134
using the first science data from the GEO 600 and LIGO detectors Phys. Rev. D 69 082004

[18] Abbott B et al 2004 First upper limits from LIGO on gravitational wave bursts Phys. Rev. D 69 102001
[19] Abbott B et al 2004 Analysis of LIGO data for gravitational waves from binary neutron stars Phys. Rev. D 69

122001
[20] Abbott B et al 2004 Analysis of first LIGO science data for stochastic gravitational waves Phys. Rev. D 69

122004
[21] Aufmuth P and Danzmann K 2005 New J. Phys. 7 202
[22] Bonazzola S and Marck J-A 1994 Astrophysical sources of gravitational radiation Ann. Rev. Nucl. Part. Sci.

44 655
[23] Schutz B F 1999 Gravitational wave astronomy Class. Quantum Grav. 16 A131
[24] Grishchuk L P, Lipunov V M, Postnov K A, Prokhorov M E and Sathyaprakash B S 2001 Gravitational wave

astronomy: in anticipation of first sources to be detected Phys. Uspekhi 44 1
Grishchuk L P, Lipunov V M, Postnov K A, Prokhorov M E and Sathyaprakash B S 2001 Usp. Fiz. Nauk.

171 3 (Preprint astro-ph/0008481)
[25] Hughes S A, Marká S, Bender P L and Hogan C J 2001 New physics and astronomy with the new gravitational-

wave observatories Proc. APS/DPF/DPB summer study on the future of particle physics (Snowmass 2001)
ed R Davidson and C Quigg, eConf C010630, P402 (Preprint astro-ph/0110349)

[26] Schutz B F 2001 Lighthouses of gravitational wave astronomy Lighthouses of the Universe: The Most Luminous
Celestial Objects and Their Use for Cosmology, Proc. MPA/ESO Conf. Lighthouses of the Universe p 207
(Preprint gr-qc/0111095)

[27] Cutler C and Thorne K S 2002 An overview of gravitational-wave sources Proc. 16th Int. Conf. on General
Relativity and Gravitation (GR16) (Preprint gr-qc/0204090)

[28] Finn L S 1999 Gravitational radiation sources and signatures (Gravity: From the Hubble Length to the Planck
Length Lectures given at the XXVI SLAC Summer Institute on Particle Physics) ed L Dixon (Springfield,
VA: National Technical Information Service) (Preprint gr-qc/9903107)

New Journal of Physics 7 (2005) 204 (http://www.njp.org/)

http://www.njp.org/


49 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[29] Hughes S A 2003 Listening to the Universe with gravitational-wave astronomy Ann. Phys. 303 142
[30] Grishchuk L P 2004 Update on gravitational-wave research Astrophysics Update ed J W Mason (Springer-

Praxis) at press (Preprint gr-qc/0305051)
[31] Thorne K S 1983 The theory of gravitational radiation: an introductory review Gravitational Radiation ed

N Deruelle and T Piran (Amsterdam: North-Holland)
[32] Schutz B F and Ricci F 2001 Gravitational waves, sources and detectors Gravitational Waves ed I Ciufolini,
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Corrigendum added 6 October 2005

Equation (4.23) of this paper should read

hTT
ij (t,x) =

2
r

d2Ikl(t − r)
dt2

[
Pik(n)Pjl(n) − 1

2
Pkl(n)Pij(n)

]
. (4.23)

The crucial second term in the square brackets was left out of the published version.
We thank Ryan Lang at MIT for bringing this error to our attention.


