
General Lorentz Boost Transformations,

Acting on Some Important Physical Quantities

We are interested in transforming measurements made in a reference frame O ′ into mea-

surements of the same quantities as made in a reference frame O, where the reference frame O

measures O ′ to be moving with constant velocity v⃗, in an arbitrary direction, which then asso-

ciates with that velocity the scale factor γ ≡ γv ≡ 1/
√

1− (v/c)2. It therefore follows that O ′

measures the reference frame O to be moving with velocity −v⃗, so that all formulae discussed

below may be re-formulated by switching quantities with a prime, i.e., measurements made in the

frame O ′, with quantities without a prime, while changing the sign of the velocity.

It is useful to divide all other vector quantities into their parts which are parallel and perpendic-

ular to v⃗; for instance, for the location vector r⃗ we write

r⃗ = r⃗∥ + r⃗⊥ = (v̂ · r⃗)v̂ + v̂ × (r⃗ × v̂) , (1)

where the first term, after the last equals sign, is that portion of r⃗ which is in the same direction

as v⃗, while the second term is the remainder of r⃗, which is of course perpendicular to v⃗.

The appropriate Lorentz transformation equations for the location vector are then

r⃗∥ = γ[r⃗ ′
∥ + t′v⃗] , r⃗⊥ = r⃗ ′

⊥ , (2a)

t = γ[t′ + v⃗ · r⃗ ′/c2] , (2b)

or r⃗ = r⃗ ′ + (γ − 1)(r⃗ ′ · v̂)v̂ + γt′v⃗ . (3)

Since the transformations mix together r⃗ and t, it is profitable to devise a method to describe

the quantities so that the transformation is a linear one, that can be considered using matrices.

To do this we create a 4-dimensional vector, usually referred to simply as a “4-vector,” which

then transforms between the two frames via a so-called “boost matrix”, denoted by Λ(v⃗). We

denote the location-and-time 4-vector by r̃, and write the earlier transformations in the following

way, with a 4×4 matrix performing the transformation, where we must note that the superscript

T means the transpose of the matrix. It is somewhat unfortunate, however, that the matrix is

quite messy for the general case; therefore, often the parallel and perpendicular decompositions

above are much simpler to use, although of course this is not easy when there are more than two

reference frames to consider:



(
r⃗
ct

)
≡ r̃ = Λ(v⃗)r̃ ′ = Λ(v⃗)

(
r⃗ ′

ct′

)
,

Λ(v⃗) =

(
I3 + (γ − 1)v̂v̂T γv⃗/c

γv⃗T /c γ

)

=


1 + (γ − 1)(v̂)x(v̂)x (γ − 1)(v̂)x(v̂)y (γ − 1)(v̂)x(v̂)z γ vx/c
(γ − 1)(v̂)x(v̂)y 1 + (γ − 1)(v̂)y(v̂)y (γ − 1)(v̂)y(v̂)z γ vy/c
(γ − 1)(v̂)x(v̂)z (γ − 1)(v̂)y(v̂)z 1 + (γ − 1)(v̂)z(v̂)z γ vz/c

γ vx/c γ vy/c γ vz/c γ


(4)

Now that we have this structure, however, we may create other 4-vectors, all of which trans-

form in the same way, and may also use those transformations to determine the relation to the

transformations of the ordinary 3-vector quantities. I will outline several of these below; however,

it is probably useful here to just re-write the above (rather messy-looking) matrix as it would ap-

pear acting on any arbitrary 4-vector, which we designate by the symbol p̃, with its 3-dimensional

part denoted by p⃗ and its 4-th component denoted by p4. We have(
p⃗
p4

)
≡ p̃ = Λ(v⃗)p̃ ′ =

(
p⃗ ′ + (γ − 1)(v̂ · p⃗ ′)v̂ + γ (p4)′v⃗/c

γ[(v⃗ · p⃗ ′)/c+ (p4)′]

)
(5)

Arbitrary 4-vectors have associated with them an invariant quantity which is a generalization of

“length” or distance in 3-dimensional space, which we will usually refer to as simply the square

of the 4-vector, even though it may be positive, negative, or even zero. Taking this arbitrary

4-vector p̃, we have

p̃2 ≡ p̃ · p̃ ≡ p⃗ 2 − (p4)2 = (p⃗ ′)2 − [(p4)′]2 = (p̃ ′)2 , (6)

which has a value that is independent of the observer, i.e., which is invariant under Lorentz

transformations.

There are also other, important, physical quantities that are not part of 4-vectors, but, rather,

something more complicated. The most immediate ones are the electromagnetic fields, which, in

(4-dimensional) spacetime belong as the 6 components of a second-rank, antisymmetric tensor.

For easy reference I will also describe them in these notes, after the discussion of 4-vectors and

their associated 3-vectors.
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A very important quantity involved with the definitions used to describe the behavior of any

particle, at location r⃗(t), is the so-called proper time, τ , which is a scalar quantity. We know that

any two points on the world line of some observer are “time-like separated.” Therefore, for any

two such points, A and B, we define the difference of their proper time by

(∆τ)2AB ≡ (∆t)2AB − (∆r⃗)2AB/c
2 , (7)

where the sign is chosen so that ∆τAB ≡ τB − τA is positive when B is to the future of A,

along the worldline in question. This is just the time shown on the “wrist-watch” of the

observer whose worldline this is. This quantity is an invariant one, having the same value no

matter which observer happens to measure it, i.e., happens to be making measurements on this

particular worldline’s behavior. As well, we see that one may label uniquely points on a given

worldline by their value of τ , relative to some chosen origin and some chosen scale of units, i.e.,

seconds, years, etc. Therefore we may take derivatives along that worldline with respect to the

proper time, τ of a particle that has location r⃗(t):

1. The velocity 4-vector is denoted by ũ—to distinguish it from the velocity between reference

frames denoted by v⃗—and has its transformation law given by

d

dτ
r̃ ≡ ũ = γu

(
u⃗
c

)
, where u⃗ ≡ d

dt
r⃗ ,

dt

dτ
= γu . (8)

Note that the 4-dimensional square of the 4-velocity is given by the following constant value:

(ũ)2 ≡ ũ · ũ = γ2
u[u⃗

2 − c2] = −c2 . (9)

2. For a particle of mass m, moving with velocity u⃗, the energy-momentum 4-vector is given by

mũ ≡ p̃ ≡
(

p⃗
E/c

)
= mγu

(
u⃗
c

)
.

Note that the mass m here is also sometimes referred to as the rest mass of the particle, since

it is to be measured in a reference frame where the particle is at rest, which is therefore an

invariant quantity:

−p̃ 2/c2 = −[mũ] 2/c2 = −m2(−c2)/c2 = m2 . (10)

3. The acceleration 4-vector is then given by

ã ≡ d

dτ
ũ =

d2

dτ2
r̃ = γ2

u

(
a⃗+ γ2

u(u⃗ · a⃗)u⃗/c2
γ2
u(u⃗ · a⃗)/c

)
, where a⃗ ≡ d

dt
u⃗ =

d2

dt2
r⃗ . (11)
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4. The 4-vector force is defined so that (the appropriate generalization of) Newton’s Second Law

is still true, where we also recall that dE/dt = F⃗ · u⃗, with F⃗ being the usual 3-dimensional

force vector:

K̃ ≡ d

dτ
p̃ , K̃ = γu

(
F⃗

1
cdE/dt

)
, (12)

Using these definitions, and the fact that each of them is a 4-vector and therefore transforms

very simply by multiplication by Λ(v⃗), we may work out the Lorentz transformations of the

associated 3-vectors, which are, in general, as expected, not very nice, except for the 3-momentum

and energy/c, which transform exactly the same way as does the 3-location and c(time):

1. The 3-velocity, u⃗, and its associated function γu:

u⃗∥ =
u⃗ ′
∥ + v⃗

1 + v⃗ · u⃗ ′/c2
, u⃗⊥ =

γ−1
v u⃗ ′

⊥
1 + v⃗ · u⃗ ′/c2

, (13a)

or u⃗ =
γ−1
v u⃗ ′ + (1− γ−1

v )(v̂ · u⃗ ′)v̂ + v⃗

1 + v⃗ · u⃗ ′/c2
, (13b)

and
1√

1− (u/c)2
≡ γu = γv(1 + v⃗ · u⃗ ′/c2)γu′ = γv

(1 + v⃗ · u⃗ ′/c2)√
1− (u′/c)2

, . (14)

2. The 3-momentum, p⃗ and the energy E:

p⃗∥ = γv(p⃗
′
∥ + E′v⃗/c) , p⃗⊥ = p⃗ ′

⊥ , E = γv(E
′ + v⃗ · p⃗ ′) , (15a)

or p⃗ = p⃗ ′ + (γv − 1)(p⃗ ′ · v̂)v̂ + γvE
′v⃗/c2 . (15b)

3. The 3-acceleration, a⃗:

a⃗∥ =
γ−3
v

(1 + v⃗ · u⃗ ′/c2)3
a⃗ ′

∥ , a⃗⊥ =
γ−2
v

(1 + v⃗ · u⃗ ′/c2)3
{a⃗ ′

⊥ + v⃗ × (⃗a ′ × u⃗ ′)/c2}

=
1− (v/c)2

(1 + v⃗ · u⃗ ′/c2)2

{
a⃗ ′

⊥ − v⃗ · a⃗ ′/c

1 + v⃗ · u⃗ ′/c2
u⃗ ′

⊥

c

}
or a⃗ =

γ−3
v

(1 + v⃗ · u⃗ ′/c2)3
{
a⃗ ′

∥ + γv a⃗
′
⊥ + γv v⃗ × (⃗a ′ × u⃗ ′)/c2

}
.

(16)

4. The 3-force, and its associated quantity Ė = dE/dt = F⃗ · u⃗, when it is acting on an object

with velocity u⃗:

F⃗∥ =
F⃗ ′

∥ + (u⃗ ′ · F⃗ ′)v⃗/c2

1 + v⃗ · u⃗ ′/c2
, F⃗⊥ =

γ−1
v F⃗ ′

⊥

1 + v⃗ · u⃗ ′/c2
, (17a)

or F⃗ =
γ−1
v F⃗ ′ + (1− γ−1

v )(v̂ · F⃗ ′) v̂ + (u⃗ ′ · F⃗ ′)v⃗/c2

1 + v⃗ · u⃗ ′/c2
, (17b)
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and a related set of equations, showing the true relationships between the 3-force and the

3-acceleration when objects are moving quite fast:

F⃗ = γum[⃗a+ γ2
u(u⃗ · a⃗)u⃗/c2] , (18a)

or F⃗∥u⃗ = γ3
u ma⃗∥u⃗ , F⃗⊥u⃗ = γu ma⃗⊥u⃗ . (18b)

Notice that the factor involving γu that multiplies the Newtonian-like quantity ma⃗ is quite

different for the 2 cases of acceleration parallel to the frame velocity v⃗ and perpendicular to

it! This makes it impossible to create some sort of “new” definition of mass which would

allow the Newtonian relation between F⃗ and ma⃗.

We now want to say a little bit about the electromagnetic fields. They properly belong as

components of a particular second-rank, antisymmetric tensor, usually referred to as the Faraday.

Choosing the simplest, Cartesian basis for our 3-vectors, the Faraday is presented as the following

matrix:

Fµν =


0 Bz −By −Ex/c

−Bz 0 Bx −Ey/c
By −Bx 0 −Ez/c
Ex/c Ey/c Ez/c 0

 . (19)

Since we know that a 4-vector transforms via the Lorentz boost matrix, as described earlier, via
∼
r = Λ(v⃗)

∼
r ′, we may surmise, or believe, that this 2-index object should transform as

Fµν = Λ(v⃗)µαF
′αβΛ(v⃗)νβ ⇐⇒ F = Λ(v⃗)F ′Λ(v⃗)T , (20a)

where the second equality is simply the same as the first one, but written in terms of square

matrices, using the usual rules for matrix arithmetic to express the pair of (implied) sums in the

first formulation.

As before, such a set of transformation equations is perhaps easier to understand if written

out in terms of those components parallel and perpendicular to the transformation velocity:

E⃗∥ = E⃗ ′
∥ ,

E⃗⊥ = γv{E⃗ ′
⊥ − v⃗ × B⃗ ′} ,

} {
B⃗∥ = B⃗ ′

∥ ,

B⃗⊥ = γv{B⃗ ′
⊥ + v⃗ × E⃗ ′/c2} ,

(20b)

Notice that these equations are really rather different from those for a 4-vector, especially in

the sense that for the 3-vector portion of a 4-vector it is that part perpendicular to v⃗ which is

unchanged, while for the 3-vectors E⃗ and B⃗, it is their portion parallel to the velocity which is

unchanged.
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Again, as a useful reference, there is a second way to present the elements of the electromag-

netic field, in terms of a different, second-rank, antisymmetric tensor, referred to as the dual of

the Faraday, denoted by ∗F , and also sometimes named the Maxwell tensor. It is presented, in

the same way as above by the following matrix:

(∗F )µν =


0 −Ez/c +Ey/c −Bx

+Ez/c 0 −Ex/c −By

−Ey/c +Ex/c 0 −Bz

+Bx +By +Bz 0

 . (21)

In order to understand how these two presentations are related see notes on the Levi-Civita

weighted tensor, and its use to divide skew-symmetric matrices into two distinct parts. Of course

the individual transformation equations generated by making a Lorentz transform of the Maxwell

are the same as those generated by using the Faraday, as given in Eqs. (20b).
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