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Abstract
We provide a realization of a singularity-free inflationary universe in the form of
a simple cosmological model dominated at early times by a single minimally
coupled scalar field with a physically based potential. The universe starts
asymptotically from an initial Einstein static state, which may be large enough
to avoid the quantum gravity regime. It enters an expanding phase that leads
to inflation followed by reheating and a standard hot big bang evolution. We
discuss the basic characteristics of this emergent model and show that none is
at odds with current observations.

PACS numbers: 98.80.−k, 98.80.Cq

1. Introduction

The idea that the universe we inhabit might be in a state of eternal inflation is not new. In fact it
was realized quite soon after its initial proposal that inflation is usually future eternal; that is, in
most cases there will always be regions of spacetime that are inflating in the future. So a natural
question arises as to whether the universe was always inflating in the past; could inflation be
past eternal also? Recent work by several authors [1] seems to indicate that the answer to
this intriguing question is decidedly ‘no’! Using Penrose–Hawking–Geroch techniques, it is
argued in detail that a spacetime that (i) is past causally simple, (ii) is open, (iii) is described
by Einstein’s equations with a matter source that obeys the weak energy condition and
(iv) allows for inflation to be future eternal, cannot be past null complete. Crucial to the
argument is the assumption that the universe is open or at least flat. As is often pointed
out though, we are emerging into an era of ‘precision cosmology’ and measurements of
temperature anisotropies in the microwave background are able to place greater constraints on
the curvature of the universe than ever before [2]. The recent Wilkinson Microwave Anisotropy
Probe (WMAP) data seem to point to a universe that is close to (but not quite) flat, with
a total density parameter of �tot = 1.02 ± 0.02. Nevertheless, until we have something like
a three sigma signal, it remains premature to conclude with any certainty whether we live
in a flat universe or not1. In particular, the WMAP data do not rule out closed models. In this
1 We thank the referee for reminding us of this point.
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light, it would seem that we have a promising avenue around the arguments of [1]. If we live
in a universe that is closed (albeit only marginally so) today, then it was always closed, and
perhaps inflation is past eternal after all.

Recently arguments were put forward for several inflationary cosmologies that were past-
eternal while avoiding any quantum gravity regime [3]. Each of the proposed models is
spatially closed and described only with general relativity, ordinary matter and minimally
coupled scalar fields. Their existence argues against suggestions of [1] that inflationary
universes are necessarily bounded in the past, and shows that a quantum gravity dominated
era for the universe may not be inevitable; something that has also been noted in [4]. The
Eddington–Lemaı̂tre cosmology is a well-known example of a universe that is not past geodesic
incomplete, because of its positively curved spatial sections. Harrison has also given an exact
solution with similar properties [5]. It is a radiation-dominated closed universe with a positive
cosmological constant. It starts from an Einstein static state, with a radius determined by
the value of �, before entering a never ending period of de Sitter expansion. However both
these models do not exit inflation. Here, following [3], we consider a universe filled with
a dynamical scalar field, which is past asymptotic to an Einstein static model with a radius
determined by the field’s kinetic energy. This model enters a period of de Sitter inflation
that comes naturally to an end as the scalar field starts oscillating around the minimum of
the potential, before entering the standard hot big bang expansion phase. Thus these are
singularity-free inflationary universe models2, by-passing the restrictions of the singularity
theorems mentioned above3. They are finely tuned in terms of the initial conditions, although
one can use entropy arguments to favour an initial Einstein static phase for our universe [27].
We consider possible implications of this fine-tuning in the conclusion.

2. A potential emergent potential

Slightly more than a decade ago, it was shown [7] that by an inversion of the conventional
viewpoint (beginning with a scalar field whose self-interaction is dictated by some underlying
particle physics considerations and subsequently determining the evolution of the universe)
scalar field dynamics could be explicitly accounted for without a slow-roll approximation.
Indeed a scalar field potential V (φ) could quite easily be ‘reverse engineered’ for almost any
desired behaviour of the scale factor a(t). Several examples were explicitly computed and are
summarized:

a(t) V (φ)

A exp(ωt) 3κ−1ω2 + ω2(φ − φ0)
2

A sinh(ωt) 3κ−1ω2 + B2 sinh2(2ω(φ − φ0)/B)

A cosh(ωt) 3κ−1ω2 + B2 sin2(2ω(φ − φ0)/B)

Atn (3n − 1)B2 exp(±2(φ − φ0)/B)/2

2 One objection that could be raised at this point is the persistence of closed trapped surfaces in this cosmological
model and the consequent implications for the existence of a cosmological singularity. Indeed such past closed
trapped surfaces do exist but as shown in [6] do not imply the existence of a cosmological singularity in the model.
3 The assumptions of the singularity theorems were later relaxed [1], and it was pointed out that essentially the
same argument holds for any spacetime in which null geodesics do not recross after traversing the entire universe.
This is not true for the Einstein static spacetime so the models presented here safely fall out of the domain of the
Borde–Vilenkin theorem.



The emergent universe: an explicit construction 235

where κ = 8πG. The above, respectively, corresponds to de Sitter exponential expansion,
de Sitter expansion from a singularity de Sitter expansion, without a singularity and power-
law expansion, respectively [7]. The eternal emergent universe, a nonsingular model past
asymptotic to an Einstein static universe with topology R × S3 and radius a0 � LPl, can be
treated in this way too. For a prescribed scale factor behaviour of a(t) ∼ a0 + exp(ht), an
associated potential is not too difficult to compute (see the appendix for details). While it
certainly produces the desired early time behaviour, the potential does not have a definitely
zero minimum. This is an undesirable feature as it points to a rather large cosmological
constant, although there are ways around it. Also, because of the limits on the integration
in the reverse-engineering construction, a graceful exit from the inflationary regime is not
always guaranteed. Consequently we need to find a universe with a potential that is essentially
the same as that in the eternal emergent universe at very early times but then goes to zero at
some finite value of the field. That is, we need to look for a potential V (φ) that matches onto
the reconstructed potential (figure 6) as t → −∞, with a long flat plateau, but then has a
vanishing minimum value.

Fortunately we need not look too far. Inflationary models based on higher-derivative
curvature terms go back to the remarkably prescient work of Starobinsky [8] in which the
de Sitter phase was driven by the trace anomaly of the energy momentum tensor (see also [9]).
Among the variants of the original Starobinsky model, R2-inflation based on a Lagrangian of
the form L = R + αR2 exhibits a particularly elegant implementation of a de Sitter phase with
a linearly decaying Hubble parameter, H. The R2 term in this action is effectively an additional
scalar degree of freedom which may be absorbed by the introduction of a (non-dynamical)
scalar field [10].4 Einstein gravity is restored by an appropriate conformal transformation but
at the expense of a dynamical scalar field with an interesting potential [11, 13–15]. Since we
build our model from a related potential, it is worth seeing how this works. Starting from an
R2-modified action

S =
∫

d4x
√−g[R + αR2]

=
∫

d4x
√−g[(1 + 2αR)R − αR2], (1)

define �2 := 1 + 2αR and make the conformal transformation gµν �→ g̃µν = �2gµν so that√
−g̃ = �4√−g and

R̃ = 1

�2
[R − 6gµν∇µ∇ν(ln �) − 6gµν∇µ(ln �)∇ν(ln �)]. (2)

Substituting this into (1) gives

S =
∫

d4x
√

−g̃
[
R̃ − α

�4
R2

]
+ 6

∫
d4x

√−g�∇µ(gµν∂ν�). (3)

The last term may be evaluated by noting that the divergence ∇µXµ = (1/
√−g)∂µ(

√−gXµ).
With this, ∫

d4x
√−g�∇µ(gµν∂ν�) = −

∫
d4x

√
−g̃

1

�2
g̃µν∂µ�∂ν�

after a boundary term is discarded. The action for the R2 model in the Einstein frame is then
written as

S =
∫

d4x
√

−g̃

{
R̃ − 6α2

(1 + 2αR)2

[
g̃µν∂µR∂νR +

1

6α
R2

]}
. (4)

4 This scalar field is in fact an auxiliary one whose ‘equation of motion’ may be trivially solved to show that it is
nothing but the scalar curvature in disguise.
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Figure 1. The emergent potential for the parameter choice B = 1 is identical up to an overall
rescaling to the effective potential for the scalar field in the Einstein frame of the R2-driven inflation
model after relabelling φ as −ϕ.

To make contact with a canonical form for scalar field actions [15], it is usual to rewrite the
scalar degree of freedom offered by the scalar curvature as ϕ := √

3 ln(1 + 2αR) so that

S =
∫

d4x
√

−g̃

{
R̃ − 1

2
g̃µν∂µϕ∂νϕ − 1

4α
(e−ϕ/

√
3 − 1)2

}
.

The effective potential in (4) is just the reflection of that in figure 1 about φ = 0. Note that
the parameters describing the potential are fairly rigidly constrained (with respect to α) by the
conformal transformation5.

Since its conception the R2 model has received a significant amount of attention, largely
as a result of the fact that the scalar field driving the de Sitter phase arises so naturally
and is not inserted ‘by hand’ solely to provide the inflationary dynamics. Indeed it was
shown in [13] that the model quite naturally supports a transient period of inflation followed
by a Friedmann–Robertson–Walker (FRW) universe. Constraints on the coupling constant
α are imposed by requiring that density perturbations to be of an appropriate magnitude.
Consequently, 1012M−2

Pl � α � 1016M−2
Pl . This in turn determines the height of the plateau of

the potential to be of the order 10−13–10−17 × M4
Pl [16]. This form of the potential will form

the cornerstone of our construction of the emergent universe.

3. Determination of the parameters in the potential

Emergent-type universes can be realized by relaxing the constraints on the R2 effective
potential and considering a spacetime filled with a minimally coupled, single scalar field
φ with a potential of the general form

V = V (φ) = (A eBφ − C)2 + D, (5)

where A,B,C and D are constants to be determined by the specific properties of the emergent
universe. Then,

V ′(φ) = 2AB(A eBφ − C) eBφ, (6)

5 In fact, such a potential is not unique to higher-order gravity theories. In particular, it has been shown that such
potentials appear quite naturally in models of spontaneously broken scale invariance [12].
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and

V ′′(φ) = 2AB2(2A eBφ − C) eBφ, (7)

where a prime indicates a derivative with respect to φ. Therefore, the above potential has a
minimum at φ0 = (1/B) ln(C/A) with V0 = V (φ = φ0) = D. Consequently, if we want to
set the minimum of the potential at the origin of the axes, we must choose A = C and D = 0.
Note that zero minimum for V (φ) guarantees that there is no residual cosmological constant.
Then, expression (5) reduces to

V (φ) = A(eBφ − 1)2. (8)

By definition, the emergent universe corresponds to a past-asymptotic Einstein-static (ES)
model [3]. This means that

V (φ → −∞) = 2

κa2
0

, (9)

where a0 is the radius of the initial static model [28]. It is then clear that for a0 � LPl, where
LPl is the Planck length, the model can avoid the quantum regime. To determine an additional
parameter recall that an ES universe filled with a single scalar field satisfies the condition
V (φ) = 2

/
κa2

0 = φ̇, where κ = 8πG [28]. Hence, for an initially ES state we require that
A = 2

/
κa2

0 , which brings the expression of the potential down to

V (φ) = 2

κa2
0

(eBφ − 1)2. (10)

Therefore, the basic properties of the emergent universe have already fixed three of the four
parameters in the original potential given by equation (5). The remaining parameter (B) will
be determined by considering other aspects of the model and in particular by looking into the
density perturbation spectrum (see section 8). Nevertheless, we can still determine, the sign
of B by demanding, without loss of generality, that

V ′ = 4B

κa2
0

(eBφ − 1) eBφ < 0 (11)

for −∞ < φ < 0. This means that eBφ −1 < 0 and consequently that B > 0. Incidentally, on
comparison with the corresponding potential of the R2 action, this is seen to correspond to a
choice of negative coupling constant α as required to avoid manifesting tachyons and singular
perturbative behaviour in the model [15].

4. Leaving the Einstein-static regime

As the universe leaves the ES state the evolution of the scalar field is determined by the
Klein–Gordon equation

φ̈ + 3Hφ̇ + V ′ = 0, (12)

where H = ȧ/a is the Hubble parameter. Therefore, given that φ̇ > 0, we have expansion
only if φ̈ < −V ′. Since the potential drops with increasing φ, we may consider the following
two alternative cases:

(i) φ̈ < 0, namely a decelerated scalar field, where the friction for the deceleration comes
from the expansion. In this case one expects the kinetic energy of φ to drop. Then, since
φ̇2 	 V initially and V ′ 	 0, a slow-rolling period with φ̇2 
 V seems likely.

(ii) 0 � φ̈ < −V ′, that is a ‘slowly’ accelerating scalar field. Then, one expects the
kinetic energy of the scalar field to increase. Under these conditions, a slow-rolling regime
seems unlikely. Therefore, we are left with case (i), which splits further into two subcases:
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Figure 2. A schematic illustration of the scalar field evolution in the emergent universe. After
leaving its initial static state (1) the model enters a slow-rolling regime (see case (ia)), or it goes
through an intermediate pre-slow-roll phase (see case(ib))—(2). In either case the scale factor
grows sufficiently quickly to mitigate neglecting the curvature effects. A period of slow-roll (3)
inflation is followed by a re-heating phase (4) and then by the standard hot big bang evolution.

(ia) V ′ < φ̈ < 0, namely a ‘weakly’ decelerated scalar field, monitored by the familiar
expression associated with slow-roll inflation

3Hφ̇ + V ′ = 0, (13)

since |φ̈| < |V ′|; and
(ib) φ̈ < V ′ < 0, that is a ‘strongly’ decelerated scalar field, described by the following

form of the Klein–Gordon equation

φ̈ + 3Hφ̇ = 0, (14)

since |φ̈| > |V ′|.
So, as the universe leaves the ES state, it may evolve in a number of ways depending

on the relation between φ̈ and V ′. Cases (i) and (ii) lead to expanding models, of which (i)
is the alternative corresponding to the emergent universe. Of the two possible subcases of
(i), the first leads immediately to the standard slow-rolling inflationary regime (figure 2). In
the next sections we will concentrate primarily on this particular case. Before we proceed
further, however, we should make the following comment with regard to case (ib). It involves
a strongly decelerated, that is, a very slow-rolling scalar field. Nevertheless, equation (14)
also implies that φ̇ ∝ a−3. The latter suggests that, as φ drops rapidly, subcase (ib) could
also lead to the familiar slow-rolling inflation. We may test this possibility by considering
the reverse-engineered potential given in the appendix (see equations (A.13), (A.14)), where
φ̈ dominates over V ′ just like in (ib). Then, the point where the two potentials deviate should
determine the initial conditions for the Einstein field equations that describe subcase (ib).

5. The duration of the slow-roll regime

We solve numerically and plot the results for the scale factor in figure 3. The graph clearly
shows that a has the familiar exponential increase associated with standard slow-rolling
inflationary models while at earlier times approaches a constant non-zero value.
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Figure 3. The initial evolution of the scale factor in the emergent universe.

The duration of the slow-rolling inflationary regime, in a spatially flat model, is determined
by the usual slow-roll parameters [17]

ε(φ) = 1

2
M2

Pl

(
V ′

V

)2

and η(φ) = M2
Pl

V ′′

V
, (15)

where MPl is the Planck mass. Throughout slow-roll approximation, the above satisfy the
constraints ε(φ) 
 1 and |η(φ)| 
 1, which provide the limits of the slow-roll regime.
Applied to the potential of the emergent universe (given by equation (10), with B > 0 and for
−∞ < φ < 0), the above constraints read

ε(φ) = 2B2 e2Bφ

(eBφ − 1)2

 1, (16)

and

|η(φ)| =
∣∣∣∣2B2(2 eBφ − 1) eBφ

(eBφ − 1)2

∣∣∣∣ 
 1, (17)

respectively, where we have set MPl = 1 for simplicity. It should be emphasized that, although
our model is spatially closed, the effect of the curvature (which is dominant at very early times)
becomes negligible after a few e-foldings, and only re-emerges in the recent universe.

After a rather lengthy but fairly straightforward analysis, one can show that neither
constraint provides a lower bound for φ. Therefore, the slow-roll regime starts at an arbitrarily
small value of φ. In practice, this means that the emergent model starts slow rolling a few
e-foldings after leaving its initial ES state, at a finite φi , when the curvature effects have
become negligible. Given that the static regime corresponds to φ → −∞, φi is very small
and the available number of e-foldings can be very large.

Note that, by employing (16) and (17), we can also show that for any positive value of
B > 0 there is always a negative value for φ at which the slow-rolling regime ends, i.e., where
ε, η 	 1. For example, when B = 1 we find that φ < −ln(1 +

√
2) (for MPl = 1).

6. The number of e-foldings

For standard slow-roll inflation, the number of e-foldings is given by the expression [18]

N(φi → φf ) =
∫ tf

ti

H dt, (18)
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Figure 4. The number of e-folds obtained during a slow-roll regime in the emergent model plotted
against φi and for various values of the parameter B.

where φi, φf and ti , tf are the initial and final values of φ, and t, respectively, and H is the
Hubble parameter. The latter is generally given by [3, 28]

H 2 = 1

3
κ

(
1

2
φ̇ + V

)
− k

a2
, (19)

where k = 0,±1 is the 3-curvature index. After few e-foldings, however, the effect of the
curvature term becomes negligible, while for slow-roll inflation we have φ̇2 
 V . Thus,
throughout the slow-rolling regime H = √

κV/3. Combining expression (18) with this result
we obtain

N = −κ

∫ φf

φi

V

V ′ dφ, (20)

given that dt = dφ/φ̇ and that φ̇ = −V ′/
√

3κV , as the slow-rolling version of the Klein–
Gordon equation (i.e., with φ̈ 	 0) guarantees.

Applying the above to the case of the emergent universe, namely inserting the potential
(10), we arrive at the expression

N = − κ

2B

∫ φf

φi

eBφ − 1

eBφ
, (21)

which provides the number of e-foldings associated with the emergent universe as a function
of the yet undetermined parameter B. This is easily computed numerically, and in figure 4
we plot N against the value of φ at the start of the slow-roll period for various values of the
parameter B. Clearly, depending on the value of φi , sufficient e-folds are easily obtainable in
this model. Note that N, while certainly very large, is nevertheless finite since the value of
φi can be stretched back only to the point where the curvature effects become appreciable.
From a different point of view, the reason there are only a finite number of e-foldings is
because the initial value of the scale factor is non-zero (unlike the standard inflationary model
with K = 0).
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7. Scale factor evolution

Starting from the Friedmann equation of the slow-rolling inflationary regime (see
equation (19)) we have

φ̇

a

da

dφ
=

√
1

3
κV . (22)

At the same time, the Klein–Gordon equation gives φ̇ = −V ′/
√

3κV , having set φ̈ 	 0.
Combining the two we arrive at

1

a
da = −κV

V ′ dφ. (23)

Applied to the emergent universe, by using expressions (10) and (11), the above lead to
the differential equation

1

a
da = κ

2B

1 − eBφ

eBφ
dφ, (24)

which, integrated, gives

ln

(
a

ai

)
= − κ

2B2
(e−Bφ − e−Bφi ) − κ

2B
(φ − φi). (25)

So, the value of the scale factor at the end of the slow-rolling regime depends crucially on φi ,
namely on the value of φ at the onset of slow-roll inflation. As expected, the smaller φi is the
larger the final value of a.

8. The density spectrum

For structure formation purposes, it is crucial to determine the density contrast at horizon
crossing 50 e-foldings before the end of inflation. Following [18] we have(

δρ

ρ

)
Hor

	
(

H 2

φ̇

)
N=50

	 −
(

3H 3

V ′

)
N=50

. (26)

During the slow-rolling regime, the Hubble parameter is given by equation (19) and the above
takes the form (

δρ

ρ

)
Hor

	 −
√

1

3
κ3

(
V 3/2

V ′

)
N=50

. (27)

Substituting the potential of the emergent universe (see equation (10)), we obtain the following
expression for the density contrast associated with the model(

δρ

ρ

)
Hor

	 κ√
6Ba0

[
(eBφ − 1)2

eBφ

]
N=50

, (28)

which also depends on the yet undetermined parameter B. In view of the COBE observations
the above is constraint by

κ√
6Ba0

[
(eBφ − 1)2

eBφ

]
N=50

	 10−5. (29)

Consequently, the cosmic microwave background (CMB) anisotropy limits allow us to express
B as a function of a0, the radius of the initial ES state, which therefore becomes the key
parameter of the emergent model. In figure 5 we plot δρ/ρ against a0 for several values
of the parameter B. The appropriate value of the Einstein radius is then read off from the
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Figure 5. Plots of δρ/ρ against the size of the Einstein static universe a0 for various values of the
parameter B. As B increases from B = 0.1 through B = 1 the value of a0 for which δρ/ρ ∼ 10−5

increases from a0 ∼ 6.02 × 105LPl to a0 ∼ 0.42 × 107LPl.

intersection of the perturbation curves with δρ/ρ = 10−5. For example, the B = 1 curve
satisfies the density perturbation requirement when a0 	 106LPl. Again a comparison with
the corresponding R2 potential shows that α ∼ a2

0 ∼ 1012M−2
Pl , within the required range

for that parameter [16]. This result fixes the remaining parameter in our initial potential (see
equation (5)) leaving us with just one more freer parameter; the scalar field value when slow
roll commences φi .

Having used the amplitude of fluctuations to constrain the parameters of the model, it
remains to check that other quantities whose values are tightly constrained by CMB data
remain within their experimental bounds. Among these we count the power and polarization
spectra and the spectral index of the density fluctuations. As a preliminary check, we note
that the spectral index of scalar perturbations may quite easily be estimated by following the
prescription of [20]. We thus define the horizon-flow parameters ε1 and ε2 through the usual
slow-roll parameters ε and η as

ε1 := ε/8π, (30)
ε2 := (ε − 2η)/4π, (31)

in terms of which the spectral index nS − 1 = d lnPk/d ln k = −2ε1 − ε2. Using the
expressions (16) and (17) for the slow-roll parameters, an estimate for the first horizon-flow
parameter is obtained as ε1 ∼ 0.000 14. Subsequent computation of the spectral index yields
|nS − 1| ∼ 0.012 or nS ∼ 0.987. This result, although only a rough estimate, is certainly
compatible with those of [2, 21]. We expect that a computation of the power spectrum will not
deviate significantly from the standard result either and hope to report on this in forthcoming
work [22].

With the above value for the Einstein static radius, we anticipate that the CMB anisotropy
spectrum will have the usual Sachs–Wolfe plateau and peaks as confirmed by current
observations6. Moreover, once the scalar field potential is fixed, we have a residual one-
parameter family of models—parametrized by φi—all asymptotic to the same Einstein static
6 Indeed the following observation is relevant: the model proposed here can have the standard S3 topology for the
positively curved spatial surfaces, but that is not obligatory; they could, for example, be Poincaré dodecahedral spaces
with positive spatial curvature, as suggested by Luminet et al [19]. In that case they might give a better fit to the
WMAP data at large angular scales than other models [19].
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universe and within which is contained a class of models with �tot = 1 + ε, where ε is
arbitrarily small. Since these models are all closed and begin from the same state they
serve well to illustrate the emergent model. However, the fact that �tot is not forced to be
1.02 avoids both excessive fine-tuning of the Einstein static radius and a possible cosmic
coincidence problem7.

9. Available energy for reheating

Inflation starts at V (φ → −∞) = 2
/
κa2

0 and ends at φ = 0 with V0 = 0, which means that
the maximum energy ‘stored’ in the inflaton field is

V (φ → ∞) = 2

κa2
0

	 1037 GeV2

a2
0

. (32)

In other words, the maximum energy available for reheating is inversely proportional to the
square of the radius of the initial ES state. If a0 = 106LPl we find

V (φ → ∞) 	 1063 GeV4. (33)

Therefore, provided that thermal equilibrium has been achieved and that the reheating process
is efficient, the temperature at the beginning of the standard big bang evolution can be as high
as

TRH 	 1016 GeV. (34)

Obviously, for less efficient reheating TRH < 1016 GeV.

10. Discussion

Closed inflationary models have not had a happy time of late. Indeed many authors have taken
the latest measurements of microwave background isotropies, in particular the WMAP best
fit estimate of �tot = 1.02 ± 0.02 to signal a flat infinite universe. Yet there are two ways
to interpret these observations. It could be that the universe is in fact flat and more precise
experiments in the future will eventually whittle away at the error bars until �tot = 1 to within,
say, one part in a million. On the other hand, a comparison of BOOMERANG data [23] (with
a best fit of �tot = 1.02+0.06

−0.05) with WMAP data would seem to indicate a convergence on
�tot = 1.02 > 1 with increasing resolution. Admittedly, the dataset from which we draw
this conclusion is rather limited, and it is with much eagerness that we await results from the
European Space Agency’s PLANCK satellite. However, until this debate is settled one way
or the other, one is forced to take closed models seriously. In stark contrast to some claims in
the recent literature [24], it is not too difficult to construct consistent, single field inflationary
models in a closed universe. We give one such construction here (but invite the reader to see
[25] for another, simple yet remarkably elegant model).

The ‘emergent universe’ proposed in [3] is a simple closed inflationary model in which
the universe emerges from the Einstein static state with radius a0 � LPl, inflates and is
then subsumed into a hot big bang era. The attractiveness of the proposed model is that
one can avoid an initial quantum-gravity stage if the Einstein static radius is larger than the
Planck length. One might then ask whether such a model has a simple representation and
whether it lies within the boundaries of current observations. In this paper, we provide a
first explicit construction of such a universe. As such, it is a manifestly nonsingular closed
inflationary cosmology that begins from a meta-stable Einstein static state and decays into a
7 We thank the referee for pointing this out.
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de Sitter phase and subsequently into standard hot big bang evolution. Inspired by an exact
reverse engineered potential constructed as in [7] (see the appendix), this phenomenological
model employs a single scalar field with a potential very similar to that arising in conformally
transformed R2-inflation only with a relaxing of some of the rigidity of that potential. In
particular, beginning with a four-parameter potential (5), we can immediately fix two of the
parameters by fixing the origin of the potential and requiring vanishing cosmological constant.
By requiring this potential to match onto the exact reverse engineered one at early times
(|φ| � 1), a third parameter of the potential is related to the radius of the initial Einstein
universe by A2 = 2

/
κa2

0 . The remaining two-parameter model is then shown to exhibit
all the desired properties of the emergent universe model. Among others, these include a
sufficient number of e-folds to solve the late-time flatness problem, a spectrum of density
fluctuations with magnitude of the order of 10−5 and sufficient energy in the scalar field to
allow for adequate post-inflationary reheating. Of these we find that the spectrum of density
fluctuations provides another constraint that allows us to relate the remaining two parameters
so that effectively, the only parameter in the model is the size of the Einstein static universe.
As for the re-heating energy, we show that for an initial radius of a0 = 106LPl we can obtain
re-heating temperatures of around 1016 GeV.

Of course, an immediate question arises as to a viable mechanism that realizes the initial
Einstein static universe that our model emerges from. At this point several avenues present
themselves. Among the more promising, we note two; the first of these is the observation of
[29] that the Einstein static universe is one of only two asymptotic solutions of the Ramond–
Ramond sector superstring cosmology field equations8. The size of the positively curved
Einstein universe in this picture is controlled by the level number of the Kac-Moody algebra
of the conformal fields living in the compactified internal space. Indeed, this observation
leads quite naturally to the tantalizing possibility of realizing an emergent-like universe within
a string cosmology context [30]. A second, equally intriguing, possibility is that the initial
Einstein static universe is created from ‘nothing’ by some quantum tunnelling process [31, 32].
Indeed, finiteness of the tunnelling action requires that the universe created through instanonic
tunnelling be closed [33]. It is not implausible, then, that through spontaneous quantum
fluctuations, a closed universe could be created in a long lived but transient Einstein static
state which then makes a transition to a finite lifetime de Sitter and subsequent marginally
closed FRW phase along the lines described above. It remains to be seen that such a mechanism
can be concretely realized in any quantum cosmological framework.

The attractive aspects of the Einstein static solution as a preferred initial state for our
universe have been considered in the past. In fact, Gibbons has argued for the higher
probability of an Einstein static initial phase based on the model’s maximal entropy [27].
Crucially, once the universe finds itself near the static state it could remain there for an
undetermined amount of time. This is guaranteed by the neutral stability of the Einstein
static model against inhomogeneous (either pure fluid or pure scalar field) perturbations
[26–28]. Typically, expansion away from the static solution will lead to inflation followed by
the standard hot big bang evolution. However, the reader will probably by now have noted the
large degree of fine-tuning that went into setting up the initial state from which the universe
emerges. Indeed, the emergent model is a very special trajectory in the space of possible
inflationary evolutions. We have shown the existence of such models, but not that they are
probable.

Some may regard this as a deadly blow to these models, but we believe the case is wide
open. Firstly, we note that although the idea that the universe should be probable (and so not

8 The other being a linearly expanding Milne universe.
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fine-tuned) is the dominant paradigm in cosmology at present, there is no scientific proof that
this has to be the case. This is an unproven and indeed unprovable philosophical assumption,
which may or may not be true9. It is equally conceivable that—as was taken for granted in
the past—whatever process causes the universe to come into being prefers a high-symmetry
state. It is then relevant that the Einstein-static model is the highest symmetry non-empty
Robertson–Walker universe, and so would be preferred by such a process.

Secondly, the models presented here show that one can avoid the initial singularity if
initial conditions were fine tuned in the way remarked on above. We believe it likely that
this is a generic result: that given the usual physics of inflationary fields in the early universe
(i.e., avoiding the introduction of ‘shadow matter’ which violates the weak energy condition),
there is either a singularity at the start of the universe10 or a fine-tuned initial state. This may
be the real philosophical choice facing us: to decide which is worse, a spacetime singularity,
with all that that entails, or a fine tuning of initial conditions. It certainly seems very difficult
to (phenomenologically, at least) construct a model that avoids both, and it is useful to recall
Wheeler’s characterization of spacetime singularities caused by gravitational collapse as the
worst crisis facing theoretical physics. Nowadays we do not perhaps take such singularities
seriously enough.

Models of the kind presented here are useful in terms of making clear the alternatives
facing us: we can indeed avoid both a singularity and the quantum gravity regime, without
introducing any exotic physics; but there is a price to pay in terms of fine-tuning. From some
philosophical standpoints the high symmetry of the initial state may even be an advantage.
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Appendix. An exact solution

Consider a Friedmann–Robertson–Walker (FRW) universe containing a minimally coupled
scalar field φ with Lagrangian density

L = 1
2 (∂φ)2 − V (φ) = 1

2 φ̇2 − V (φ), (A.1)

where the last equality follows from assuming spatial homogeneity of the φ field, i.e., φ = φ(t).
With this assumption, the stress-energy tensor takes the form of a perfect fluid with energy
density and pressure

ρφ = 1
2 φ̇2 + V (φ),

pφ = 1
2 φ̇2 − V (φ),

(A.2)

9 The proposal of an actually existing multiverse, which could possibly be used to justify the idea that the universe
must indeed be probable, is also unprovable.
10 Or at least non-avoidance of the quantum gravity domain, when quantum gravity processes may possibly avoid the
singularity.
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respectively11. The classical equation of motion for φ that follows from variation of the action
S = ∫

d4x
√−gL is

φ̈ + 3Hφ̇ +
dV (φ)

dφ
= 0, (A.3)

where the Hubble parameter H := ȧ(t)/a(t). The Raychaudhuri field equation for the FRW
model with scalar field matter source and its first integral, the Friedmann equation are

3Ḣ + 3H 2 = 8πG(V (φ) − φ̇2), (A.4)

and

3H 2 + 3
k

a2
= 8πG

(
1

2
φ̇2 + V (φ)

)
, (A.5)

respectively. These equations, together with (12) for a closed dynamical system from which
the evolution of the universe model is determined. However, it is important to note that the
Klein–Gordon equation is auxiliary in the sense that any solution of (A.4) and (A.5) with
nonvanishing φ̇ will necessarily satisfy (12) so that the dynamical system in fact contains
only two independent equations12. These may be combined [7] to give the (more convenient)
equivalent set of equations

V (φ(t)) = 1

8πG

(
Ḣ + 3H 2 + 2

k

a2

)
,

(A.6)

φ̇2(t) = 1

4πG

(
k

a2
− Ḣ

)
.

With these equations at hand, the potential V (φ) is constructed by

• Specifying the constant k and a particular (monotonic) function a(t) and computing the
associated Hubble parameter H and Ḣ .

• Checking that the constraint k/a2 − Ḣ � 0 is met. This assures the positivity of φ̇2 as is
necessary for a neutral scalar field.

• Specifying an initial condition φ0 for φ(t) and integrating the second of equations (A.6)
to get φ(t). This is then inverted (where possible) to give t (φ).

• Substituting into the first of equations (A.6) to obtain V (t) = V (t (φ)) and subsequently
V (φ).

Thus, as advertised, this algorithm associates with a specified scale factor a(t) a potential
V (φ) to give a model that exactly solves the classical inflationary field equations. At this point
some comments are in order: first, the reconstruction of the potential is manifestly non-unique
as should be clear from the sign ambiguity in the choice of root in the φ̇ equation (A.6).
Secondly, it is not clear how sensitive this algorithm is to the choice of initial conditions for
φ, i.e., on where on the potential the scalar field resides when it begins to roll. While general
shape should be independent, it might be expected that the details of the potential (location of
extrema etc.) would vary with different initial conditions. This, however, does not affect the
argument.

The emergent model is essentially a modified version of the Eddington–Lemaître
universe—k = +1, past-asymptotically Einstein static, singularity-free, without particle
11 More generally, the FRW universe may also be assumed to contain some noninteracting perfect fluid with energy
density ρ and pressure p = wρ with − 1

3 < w � 1. The inclusion of such additional matter sources is, however,
unnecessary for the purpose of this work.
12 If φ̇ does indeed vanish then the Klein–Gordon equation is no longer a consequence of the other two equations but
may nevertheless be easily solved to yield a constant potential V (φ) = const.
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horizons and ever-inflating (see [3] for more details). Before applying the potential
reconstruction technique to this model, a few general observations about the scenario beg
attention. The Einstein static state containing matter with energy density ρi and pressure
pi = wiρi (−1/3 < wi < 1) is characterized by

1

2
(1 − wi)ρi + V (φ) = 1

4πGa2
0

,

(1 + wi)ρi + φ̇2
i = 1

4πG
,

(A.7)

where a0 is the radius of the S3 spatial sections of the universe. If the sole content of this
universe is the scalar field, as is the case in this note, ρi = 0 and the second of equation (A.7)
requires that the scalar field have non-vanishing (but constant) kinetic energy. In this model
with no matter initially present, the mechanism envisaged in [3] has φ rolling at a constant
speed along a flat potential (V = Vi) from φ = −∞ at t = −∞ to φ = 0 at t = 0 where
the potential first rises (and inflation is initiated) and then drops to a minimum at φ = φf ,
where the value of the potential is Vf = �/8πG 
 Vi . The field is carried over the hill by
its non-zero kinetic energy and slow rolls towards the minimum where its damped oscillations
reheats the universe. What follows is an attempt to realize this scenario.

To this end, and to facilitate numerical computations it will prove useful to rescale
quantities of interest as

V (φ) → M4
PlV (φ), φ(t) → MPlφ(t),

t → t/MPl, a(t) → a(t)/MPl,
(A.8)

where M2
Pl := 8πG. In these units the Raychaudhuri equation and its first integral, the

Friedmann equation become

3Ḣ + 3H 2 = V (φ) − φ̇2,

3H 2 + 3
1

a2
= 1

2
φ̇2 + V (φ),

(A.9)

which, together with the Klein–Gordon equation form the dynamical system governing
the evolution of the closed scalar field dominated FRW universe. The corresponding
equations (A.6) for the potential and φ̇(t) that are the starting point for the reconstruction
of the potential take the form

V (φ(t)) = Ḣ + 3H 2 +
2

a2
φ̇2(t) = 2

(
1

a2
− Ḣ

)
. (A.10)

Following [3] consider the scale factor

a(t) = A + B exp(ht), (A.11)

where A,B, h are all positive constants. This universe is past asymptotic to an Einstein static
phase, since a(t) → A as t → −∞. Thus, A is identified with the radius a0 of the Einstein
static universe. At late times, on the other hand, a(t) → B exp(ht) and the model approaches
a de Sitter expansion phase. The second of equations (A.10) then gives

φ(b) =
√

2
∫

db

hb

√
1 − h2a0b

(a0 + b)2
, (A.12)

where b := B exp(ht). The integral is easily evaluated to give

φ(b) =
√

2

ha0
ln




√
1 + h2a2

0 +
√

1 − h2a0b√
1 + h2a2

0 −
√

1 − h2a0b


√

1+h2a2
0 (

1 −
√

1 − h2a0b

1 +
√

1 − h2a0b

) , (A.13)
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Figure 6. A parametric plot of the re-constructed potential corresponding to the exact solution
a(t) = a0 + exp(ht) normalized with respect to the size of the Einstein static universe. This
re-constructed potential exhibits the same shape as the effective potential of the R2 model in the
Einstein frame but is plagued by a rather shallow minimum (only about 91% of its asymptotic
value).

and with the b parametrization the potential is written

V (b) = 3(hb)2 + h2a0b + 2

(a0 + b)2
. (A.14)

At this stage, an expression for V (φ) is, in principle, obtained by inverting equation (A.13)
and substituting b(φ) into equation (A.14). However the above form of φ(b) precludes such a
simple treatment. Nevertheless, the general shape of V (φ) is easily determined by a parametric
plot. This is given in figure 6.
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