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Abstract. The subject of cosmological backreaction in General Relativity is often

approached by coordinate-dependent and metric-based analyses. We present in this

letter an averaging formalism for the scalar parts of Einstein’s equations that is

coordinate-independent and only functionally depends on a metric. This formalism

is applicable to general 3 + 1 foliations of spacetime for an arbitrary fluid with tilted

flow. We clarify the dependence on spacetime foliation and argue that this dependence

is weak in cosmological settings. We also introduce a new set of averaged equations

that feature a global cosmological time despite the generality of the setting, and we

put the statistical nature of effective cosmologies into perspective.
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1. Context

Cosmology deals with models for the evolution of the Universe and, within General

Relativity, entails the question of how to split the 4−dimensional spacetime into a

3−dimensional space evolving in time. This question can be formally answered by

a 1 + 3 threading along a preferred timelike congruence (see, e.g. [16, 23]), or by a

3 + 1 slicing (foliation) into a family of spacelike hypersurfaces (see, e.g. [2, 18]). Both

decompositions introduce four degrees of freedom, which are given in terms of a lapse

function and a shift vector (or one-form). We shall consider the threading and slicing

approaches jointly to formalize configurations where the fluid content is described by

a 4−velocity tilted with respect to the hypersurface normal. A priori, only in special

cases does the slicing keep the proper time of the fluid elements synchronous.

In standard cosmology one commonly idealizes the geometry of the Universe by a

homogeneous-isotropic background metric with constant spatial curvature. In the case

of the so-called concordance or ΛCDM model (“Cold Dark Matter with dark energy

modeled by the cosmological constant Λ”), the metric form features a global time

t labeling Euclidean spatial sections that admit global coordinates xi, with a global
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rescaling factor a(t),1 4ghom = −dt2 + a2(t)δijdx
i ⊗ dxj . It is known that other choices

of slicing change Friedmann’s equations which determine the only gravitational degree

of freedom, a(t). See, e.g. [5]. The scale factor may even become space-dependent, for

instance for a general slicing lapse. The problem of dependence on spacetime foliation

therefore also exists in standard cosmology, where it is solved by choosing a preferred

(proper time) foliation anchored to the Cosmic Microwave Background (CMB) rest

frame.

Nonlinear structure formation in cosmology is most often investigated within the

Newtonian framework of self-gravitating fluids. Efforts to describe relativistic models

of inhomogeneities often rely on metric forms that are designed to be ‘close to’ the

homogeneous-isotropic metric form above. The idea is to describe ‘small’ perturbations,

which is a sensible assumption for metric perturbations, since they are indeed very small

except in the vicinity of strong field astrophysical objects [22].2 In the longitudinal gauge,

the lapse function and the spatial 3−metric are referred to a ‘perturbed Newtonian

setting’, with an assumed metric form for the physical spacetime,

4gpert = −N2dt2 + gij dx
i ⊗ dxj , (1)

where the slicing lapse N and the 3−metric coefficients gij of a family of spacelike

hypersurfaces t = const. are written as (here for scalar perturbations only):3

N2 ≡ 1 + 2Φ(t, xi) ; gij ≡ a2(t)[1− 2Ψ(t, xi)] γij . (2)

We note that the extrinsic curvature has no trace-free part, i.e. for a fluid 4−velocity

parallel to the normal congruence N−1
∂t the above metric describes homogeneous

solutions in cosmologically relevant cases [12, 13, 14].4

Metric forms that are designed to stay ‘close to’ a homogeneous solution are

also used to address the backreaction problem by devising simulations that include

relativistic corrections. As an example we read in [1] (see also references therein) that

‘the backreaction from structure can differ by many orders of magnitude depending upon

the slicing of spacetime one chooses to average over’. We shall confront this statement

with a covariant and background-free result about averaged dynamics that allows us

to discuss the foliation dependence of backreaction without the need to consider gauge

transformations.

1 We adopt the conventions that Greek indices are assigned to spacetime indices running in {0, 1, 2, 3},
and Latin indices refer to space indices, running in {1, 2, 3}. The signature of the metric is taken as

(−+++), and the units are such that c = 1.
2 However, the derivatives of the metric can be large. Even for metric perturbations of order 10−6,

curvature perturbations can be of order unity and therefore out of reach in this setting [9]. Green and

Wald [19] have modified earlier statements of [22] emphasizing that curvature can be large. (Their

statement of trace-free backreaction, however, has no physical justification [10].)
3 Here, a(t) denotes the same scale factor as in the homogeneous-isotropic case, which follows by setting

0 = Φ = Ψ; γij denotes a constant curvature metric that is commonly considered to be flat, γij = δij .
4 It is commonly assumed that the 4−velocity is tilted with respect to the normal congruence, but that

spatial velocities are non-relativistic, i.e. that the Lorentz factor γ is close to 1. Our remark implies

that by replacing the approximate sign by an equality sign the fluid has to be shear-free in the metric

form {(1) and (2)} and, hence, homogeneous in cosmologically relevant cases [12, 13, 14].
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We finally emphasize that cosmological backreaction can only be present if the

average spatial curvature, and hence the large-scale average of cosmological variables,

are allowed to evolve. Schemes that suppress average curvature evolution by, e.g.

employing periodic boundary conditions as in Newtonian models [7], cannot describe

global backreaction, but only backreaction in the interior of an assumed background

model, i.e. ‘cosmic variance’.5

2. Explicit foliation dependence of backreaction

Cosmological backreaction is the study of inhomogeneity effects on the global evolution

of the model universe. This involves averaging strategies which can for instance be

unambiguously defined on the basis of volume averages of scalars. For irrotational dust

and irrotational perfect fluids the answer has been given in terms of volume averaged

scalar parts of the Einstein equations in [4, 5, 6]. This yielded cosmological equations

of Friedmannian form for an effective energy-momentum tensor including averages of

(extrinsic and intrinsic) curvature invariants of geometrical inhomogeneities in fluid-

orthogonal spatial domains. These results are background-free, they depend on the

averaging domain (e.g. on spatial scale), and they imply a dependence on the metric

only via the morphology of the domain and the volume element of integration. As we

shall discuss, this implicit dependence on the metric can be exploited for a statistical

interpretation of the effective cosmological equations.

In a forthcoming investigation we derive the scalar-averaged equations for arbitrary

3 + 1 foliations with general tilted fluid flow [11]. There, we discuss in detail relations

to other works where such generalizations are offered. These earlier proposals focus on

an extrinsic approach, i.e. they perform averages of the geometrical variables as seen by

hypersurface observers. As we also discuss in [11], this approach inherits problems such

as the non-conservation of the number of fluid elements within the averaging domain as

it evolves.

We present in this letter the general scalar-averaged equations derived from an

intrinsic approach, therefore following the spirit of the original works [4, 5]. Specifically,

we perform averages of the fluid variables as seen by fluid observers. We consider an

arbitrary spatial foliation which can be tilted with respect to the fluid congruence; this

is necessary for a general flow as a fluid-orthogonal foliation is impossible as soon as the

fluid has nonzero vorticity [17]. Accordingly, local spacelike projections can be performed

onto the local tangent spaces of the hypersurfaces of the foliation along their normal n,

with hµν = gµν+nµnν , or onto the rest frames of the fluid elements along their 4−velocity

u, with bµν = gµν+uµuν . These projectors define two covariant volume measures on the

tangent spaces of the hypersurfaces:
√

det(hij)d
3x and

√

det(bij)d
3x = γ

√

det(hij)d
3x,

with xi arbitrary local spatial coordinates, and γ the Lorentz factor given by the fluid

5 Theoretical foundations of the cosmological backreaction effect via structure-emerging average spatial

curvature may be found in [4, 6]. (See also illustrations within a class of background-free simulations

in [3].)
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spatial velocity v, as a measure of the local tilt between n and u, as follows:

γ =
1√

1− vαvα
; uµ = γ(nµ + vµ) ; nαvα = 0 . (3)

We associate accordingly to the same averaging domain D lying in the hypersurfaces two

different volumes: the Riemannian volume V h
D
≡
´

D

√

det(hij) d
3x, and the fluid proper

volume, V b
D
≡
´

D

√

det(bij) d
3x. The former appears on average Lorentz-contracted with

respect to the latter: introducing the proper volume averager, defined for any scalar ϕ

as 〈ϕ〉b
D
≡ 1/V b

D

´

D
ϕ
√

det(bij) d
3x, we have V h

D
= V b

D
〈1/γ〉b, which shows identity in the

absence of tilt, i.e. when γ = 1. The integral is here again performed over a domain

lying within the hypersurfaces of normal n. As we shall only consider proper volume

averages in the following, we shall omit the index b for notational ease.

We apply the averaging operator to the scalar parts of the Einstein equations over

a compact domain D lying within the hypersurfaces. Following [4, 5], D is chosen to be

a comoving domain, i.e. it is transported along the fluid congruence, which ensures the

absence of matter flow across its boundaries and the preservation of its total rest mass.

From this procedure we obtain the following expansion and acceleration laws, together

with their integrability condition, for rescaled kinematic fluid variables (the squared

rates of expansion, shear and vorticity, Θ̃2 = M2Θ2, σ̃2 ≡ M2σ2, ω̃2 ≡ M2ω2), energy

density and pressure (ǫ̃ ≡ M2ǫ, p̃ ≡ M2p), divergence of the fluid’s 4−acceleration aµ

(Ã ≡ M2A, with A ≡ ∇µa
µ), and fluid 3−curvature (R̃ ≡ M2

R):6

3
1

aD

d2aD
dt2

= −4πG
〈

ǫ̃+ 3p̃
〉

D

+ Λ̃D + Q̃D + P̃D ;

3

(

1

aD

daD
dt

)2

= 8πG
〈

ǫ̃
〉

D

+ Λ̃D − 1

2
〈R̃〉

D
− 1

2
Q̃D ;

d

dt
Q̃D + 6HDQ̃D +

d

dt
〈R̃〉

D
+ 2HD 〈R̃〉

D
+ 4HDP̃D

= 16πG

(

d

dt

〈

ǫ̃
〉

D

+ 3HD

〈

ǫ̃+ p̃
〉

D

)

+ 2
d

dt
Λ̃D . (4)

The first terms on the right-hand side of the last equation also obey an averaged energy

balance equation sourced by the non-perfect-fluid parts of the energy-momentum tensor.

We observe a time- and domain-dependent contribution from the cosmological constant,

Λ̃D ≡ Λ〈N2/γ2〉D, and two terms Q̃D and P̃D denoting the intrinsic kinematical and

dynamical backreaction terms, respectively. These are defined in terms of the rescaled

6 We defined M ≡ N/γ (the threading lapse in a 1 + 3 threading of spacetime). The hypersurfaces

are parametrized by a monotonic scalar function t. From it we can define the comoving time-derivative

d/dt as the derivative with respect to t along the fluid flow lines, and the effective Hubble rate

HD ≡ (daD/dt)/aD for the volume scale factor aD ≡ (VD/VDi)
1/3. Θ, σµν and ωµν are, respectively,

the trace, the symmetric traceless part, and the antisymmetric part of the projected 4−velocity

gradient, bαµb
β
ν∇αuβ . σ2 := (1/2)σµνσ

µν and ω2 := (1/2)ωµνω
µν define the rates of shear and

vorticity. The ‘fluid 3−curvature’ R is defined from the energy constraint in the fluid rest frames,

R ≡ −(2/3)Θ2 + 2σ2 − 2ω2 + 16πGǫ + 2Λ (see [15]), and reduces to the 3−Ricci scalar of the fluid-

orthogonal hypersurfaces for vanishing vorticity.
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fluid variables as follows:

Q̃D ≡ 2

3

〈

(

Θ̃−
〈

Θ̃
〉

D

)2
〉

D

− 2
〈

σ̃2
〉

D

+ 2
〈

ω̃2
〉

D

;

P̃D ≡
〈

Ã
〉

D

+

〈

Θ̃
γ

N

d

dt

(

N

γ

)〉

D

. (5)

The dynamical backreaction thus consists of an acceleration 4−divergence and of a

contribution that captures the rate of desynchronization of the clocks, with the proper

time τ of the fluid obeying dτ/dt = N/γ = M . By defining an effective diagonal

energy-momentum tensor with the following effective sources:7

ǫeff ≡
〈

ǫ̃
〉

D

− Q̃D

16πG
− W̃D

16πG
+

L̃D

8πG
;

peff ≡
〈

p̃
〉

D

− Q̃D

16πG
+

W̃D

48πG
− L̃D

8πG
− P̃D

12πG
, (6)

the set of effective cosmological equations can be cast into ‘Friedmannian form’:

3

(

1

aD

daD
dt

)2

= 8πG ǫeff − 3
kD

(aD)2
+ Λ ;

3
1

aD

d2aD
dt2

= −4πG (ǫeff + 3 peff) + Λ ;

d

dt
ǫeff + 3HD (ǫeff + peff) = 0 , (7)

where the last equation, the effective energy conservation law, is equivalent to the

integrability condition. The set of equations (7) needs a closure condition, e.g. an

effective equation of state that relates ǫeff , peff and aD.

3. Effective cosmological equations in the fluid proper time foliation

Starting from an arbitrary Cauchy hypersurface, one can globally construct a 3 + 1

foliation the slices of which are obtained by transporting the initial hypersurface through

the (general) 4−velocity u of the fluid. Each hypersurface of this foliation corresponds to

a constant value of proper time τ , measured along the fluid world lines and being set to

τi ≡ ti on the initial slice. The proper time τ can thus be used to label the hypersurfaces,

defining a global time parameter. The same construction can be performed from any

choice of the initial Cauchy hypersurface, identifying what we call the class of fluid

proper time foliations. (See also [16], chapter 4.1.)

Such a construction sets the normal vector n and the lapse N , which in this case

equals the Lorentz factor: N = γ. A natural choice for the shift vector N would be

7 We have defined new backreaction variables: W̃D for the deviation of the averaged fluid 3−curvature

from a constant-curvature behaviour, W̃D ≡ 〈R̃〉D − 6kD/(aD)
2, and L̃D for the deviation from the

cosmological constant Λ, L̃D ≡ Λ̃D − Λ. kD is an a priori domain-dependent arbitrary constant which

can be set to kD ≡ (aD)
2(ti)〈R̃〉D(ti)/6. In the standard cosmological model it is assumed that the

cosmological constant Λ models Dark Energy; the averaged equations show that we then also have to

account for Dark Energy backreaction L̃D in cases where N 6= γ.
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N = Nv (for which N = γ implies N2 − NµNµ = 1), identifying the points on each

hypersurface that correspond to the same fluid element. However, the choice of a shift

does neither affect the definition of our averaging formalism nor the resulting averaged

equations. Apart from the case of irrotational dust, the hypersurfaces of a fluid proper

time foliation cannot be fluid-orthogonal, namely a tilt must be present. As we shall

see, this choice carries a number of advantages in the context of the averaging problem.

Within a fluid proper time foliation, the general volume expansion and acceleration

laws for the fluid scale factor aD (together with their integrability condition), (4), reduce

to the following effective cosmological equations:

3

(

ȧD
aD

)2

= 8πG ǫeff − 3
kD

(aD)2
+ Λ ; 3

äD
aD

= −4πG(ǫeff + 3 peff) + Λ ;

ǫ̇eff + 3HD (ǫeff + peff) = 0 . (8)

The overdot denotes the covariant derivative with respect to proper time. The effective

energy density ǫeff and effective pressure peff , as defined in (6), become

ǫeff =
〈

ǫ
〉

D

− QD

16πG
− WD

16πG
;

peff =
〈

p
〉

D

− QD

16πG
+

WD

48πG
− PD

12πG
, (9)

with QD as given by (5) with non-rescaled variables (since here M = 1), and where the

dynamical backreaction reduces to PD = 〈A〉D, removing the contribution from clock

desynchronization. The cosmological constant deviation L̃D vanishes, and the curvature

deviation term W̃D reduces to WD = 〈R〉D − 6kD/(aD)
2.

We emphasize that the above system and the corresponding proper time foliation

choices are covariantly defined, i.e. are coordinate-independent [20]. For concrete

calculations of local variables, a specific set of coordinates may then be chosen depending

on the problem being investigated. For instance, for the formation of structure in

relativistic Lagrangian perturbation theory [8], an appropriate set can be constructed as

follows. First, as for the hypersurfaces labeled in terms of proper time, we can introduce

spatial labels X i to identify each fluid element in the general threading congruence

defined by u, which can always be relabeled in this covariant framework. (The spatial

labels X i provide the same identification of points as the shift vector choice N = Nv.)

Second, for any given foliation, these labels may be used as a set of spatial coordinates

propagating along the fluid flow lines. These are comoving (or Lagrangian) spatial

coordinates, where the spatial coordinate velocity (hence the spatial components of uµ)

vanish. We name this choice comoving description of the fluid, in conformity with the

literature. This description is a ‘weak’ form of a Lagrangian description of the fluid

where in addition τ is used as the time-coordinate. The coordinate assignment (X i, τ)

provides uµ = (1, 0, 0, 0). This defines Lagrangian observers who in the standard model

are called fundamental observers.
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4. Conclusion and Discussion

Looking at the set of equations (4) and their backreaction terms (5) we appreciate

that the explicit foliation dependence is solely given in terms of the threading lapse

M = N/γ. In the fluid proper time foliation we have M = 1, which does not differ

significantly from the value of the threading lapse in the metric form {(1) and (2)} for

the usual assumptions N = 1+ε ; |ε| ≪ 1 and γ = 1+ζ ; ζ ≪ 1. The remaining foliation

dependence of the amount of backreaction arises in the realization of the averaged model,

when integration of local variables is performed over specific hypersurfaces that are not

fully determined by N/γ due to the degeneracy of this ratio.

Let us now narrow down the class of relevant foliations, focussing on matter-

dominated model universes. We think of a cosmological coarse-graining that smoothes

over scales where vorticity, velocity dispersion and pressure play a role. In view of

observations one can then reasonably assume the existence of a class of foliations where

the hypersurfaces reflect statistical homogeneity and isotropy and in which the motions

of all coarse-grained fluid elements are non-relativistic, i.e. γ ≃ 1, thus identifying a

class relevant to cosmology (see also the related discussion in [24]). This implies that the

tilt is negligible on these scales, uµ ≃ nµ, and, in view of the negligible pressure gradients

over the coarse-graining scale, that the lapse function can be set to N ≃ 1.8 Overall

this estimates M to be close to a Lagrangian description, M ≃ 1, while the domain

of integration selected by the hypersurfaces is bound to small variations in spacetime,

since these hypersurfaces are constrained to remain almost orthogonal to u everywhere.

Thus, these conditions imply only small variations of the large-scale backreaction terms

(of the order of the deviations of the lapse and the Lorentz factor from 1) under a

change of cosmological spacetime foliation. Explicit bounds on such variations will

be investigated in a forthcoming paper [21]. These covariantly defined requirements

cannot be reproduced in a coordinate-dependent setting such as that used in [1]. The

variations can of course be larger when going beyond this restricted class of foliations

that are favoured on cosmological scales, as it would, e.g. be needed for evaluating

backreaction on smaller scales. These scales, where tilt, vorticity and pressure gradients

matter, can be treated as well within the general framework introduced in this letter.

We emphasize that the lapse and the Lorentz factor only depend on the normal

vector flow, and not on its derivatives, allowing for strong constraints on variations of

the backreaction with the foliation when the normal vector itself is constrained. In

our formalism, the kinematical backreaction does not involve the extrinsic curvature,

which depends on derivatives of the normal vector. It features instead derivatives of the

relative velocities of the fluid elements (such as Θ). These foliation-independent scalars

can be large despite velocities themselves being small (cf., footnote 2), allowing for large

backreaction. We remark in this context that the fact that M ≃ 1 in the metric form

{(1) and (2)}, together with the smallness assumptions made, does not mean that the

8 Another issue arises if we also consider the coarse-graining of ‘time’ that may accumulate an effective

lapse during differing histories of voids and clusters, cf. the ‘timescape scenario’ [25].
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estimates of backreaction in paper [1] fall within our conclusions about the small impact

of the foliation choice. These authors employ an extrinsic averaging formalism where

dependencies on derivatives of the normal vector n (and, thus, on derivatives ofN and γ)

are introduced in the backreaction terms via the dependence on the extrinsic curvature

of the hypersurfaces. This may lead to unphysical foliation dependence of backreaction,

just because the variables to be averaged are defined from the hypersurfaces themselves,

i.e. they characterize the properties of a family of extrinsic observers. (We consider

this additional foliation dependence ‘unphysical’, since such observers only exist as a

mathematical abstraction.)9

The fluid proper time foliation and its representation in terms of the Lagrangian

description appear to be natural choices for an effective cosmology. These settings

should not be disqualified in favour of a choice of foliation extrinsic to the fluid by

emphasizing the need to avoid singularities. For example, evolving a dust matter model

implies the development of shell-crossing, as discussed in [8], as a manifestation of the

breakdown of the dust approximation. Improving the matter model may or may not

avoid these or other (e.g. black hole) singularities.

A possible shortcoming of the proper time foliations relates to the spacelike

character of the corresponding hypersurfaces generated from the evolution of a single

fluid. While such foliations are always well-defined under the assumption that the fluid

flow contains no singularity, one has to guarantee that the hypersurfaces, generated

from the initial spacelike slice, remain spacelike for all times considered. This will

hold at least locally in general and globally for an irrotational dust model with a fluid-

orthogonal initial hypersurface (since the whole foliation will then be fluid-orthogonal).

The construction of a proper time foliation is based on the choice of an initial Cauchy

hypersurface, which has to be specified; it may be best anchored to the last scattering

surface at the CMB epoch. These aspects have to be judged within specific applications.

The proper time choice can also be criticized because it requires following the

details of inhomogeneities developing in the fluid. This latter view originates, however,

from looking at a single realization of the fluid’s evolution and a single inhomogeneous

metric. What the averaged equations embody goes beyond the picture obtained from

a single realization of the metric. Changing the metric will change the morphology of

the averaging domain and the volume element, but we are entitled to implement the

cosmological model through a statistical ensemble of realizations. With this statistical

interpretation of the averaged equations, the effective cosmological equations no longer

trace individual metric variations as suggested by a one-metric-based picture. In this

context, a further important question for the definition of statistical hypersurfaces will

be whether the tilt, depending on physics on smaller scales, would average out to provide

an effective flow-orthogonal foliation on cosmological scales. Follow-up work is dedicated

9 We also remark that if backreaction happens to be zero in one foliation (e.g. if subjected to a 3−torus

constraint on a flat space section [7]), and if it is represented by a small number in its numerical

realization, a still small but nonzero backreaction parameter in another foliation could suggest a ratio

of several orders of magnitude, even if both estimates were in reality comparable.
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to explicitly implementing these statistical aspects.
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