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fying points in .# which are equivalent under a discrete isometry
without a fixed point (e.g. identifying the point {zl, z2, 23, x%) with the
point (x%, %% 23, x*+¢), where ¢ is a constant, changes the topological
structure from R% to 1% x 81, and introduces closed timelike lines into
the space-time). Clearly, (.#, v} is the universal covering space for
all such derived spaces, which have been studied in detail by Auslander
and Markus {1958)..

5.2 De Sitter and anti-de Sitter space—tinies

The space—time metrics of constant curvature are locally characterized
by the condition Bp.; = 75B(9,.050 — Juatse). This equation is equiva-
lentto C,,; = 0 = B ;— 1 Ryg,; thus the Riemann tensor is determined
by the Ricei scalar R alone. It follows at once from the contracted
* Bianchi identities that R is constant throughout space—time; in fact
these space-times are homogeneous. The Einstein tensor is

By — 3Ry, = — 4By,

One can therefore regard these spaces as solutions of the field
equations for an empty space with A = 1R, or for a perfect fluid with
a constant density B/32 and a constant pressure — E/327. However
the latter choice does not seem reasonable, as in this case one cannot
have both the density and the pressure positive; in addition, the
equation of motion (3.10) is indeterminate for such a fluid.

The space of constant curvature with R = 0 is Minkowski space—
time. The space for B > 0 is de Siffer space—time, which has the
topology B* x 52 (see Schrodinger (1956) for an interesting account of
this space}. It is easiest visualized as the hyperboloid =~ =

,_?}Z+w2+x2+92+z2 = qz
in flat five-dimensional space R® with metric
—dv?+ dwt +da? 4 dy?2 + dz? = ds? .

(see figure 16). One can introduce coordmates & x, 6 , ) on the hyper-
boloid by the relations

asinh (¢~%) = », acosh(x~U)cosy = w,
acosh (@~)sin ycos @ = x, o cosh (x~%)sin xsinfcosd =y, . '

o cosh (o~ 1t) sin ¥ sin #sin ¢ =z
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. FreUre 16. De Sitter space—time represented by a hyperboloid imbedded in
i g five-dimensional flat space (two dimensions are suppressed in the figure).
' (i) Coordinates (2, x, 0, $) cover the whole hyperboloid; the sections {¢ = con-
i sbant} are surfaces of curvature k = + 1.
" (i) Coordinates (f,#,#,2) cover half the hyperboloid; the surfaces
{f = constant} are flat three-spaces, their geodesie normals diverging from a
. point in the infinite past. ' o

- In these coordinates, the metric has the form
ds? = — di2 + 0. cosh? (o~ 18) . {dy® + sin® ¥(A62 + sin2 6 dg2)}.

The singularities in the metric at y =0, y=mand at 6 = 0, = m,
are simply those that oceur with polar coordinates. Apart from these
trivial singularities, the coordinates cover the whole space for
—w<t<m 0 y<m0<0<7m0< ¢ < 27 The spatial sections
of constant t are spheres 83 of constant positive curvature and are
Cauchy ‘surfaces. Their geodesic normals are lines which contract
" monotonically to a minimum spatial separation and then re-expand
to infinity (see figure 16 (i}).. '
One can also introduce coordinates

W+ oo
Twtv’

oy N az
W’ w+tv

{=alog 9=

o 2
on the hyperboloid. In these coordinates, the metric takes the f_o_rr_h
ds? = — df2 +exp (207) (d&2 4 dF2 + d22).
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However these coordinates cover only half the hyperboloid as f is not
defined for w+v < 0 (see figure 16 (ii)).

The region of de Bifter space for which »+w > 0 forms the space—
time for the steady state model of the universe proposed by Bondi and
Gold (1948) and Hoyle (1948). In this model, the matter is supposed
to move along the geodesic normals to the surfaces {f = constant}. As
the matter moves further apart, it is assumed that more matter is
continuously created to maintain the density at a constant value,
Bondi and Gold did not seek to provide field equations for this model,
but Pirani (1955), and Hoyle and Narlikar (1964) have pointed out
that the metric can be considered as a solution of the Einstein equa-
tions (with A = 0) if in addition to the ordinary matter one introduces
a scalar field of negative energy density. This ‘C’-field would also be
respongible for the continual creation of matter.

The steady state theory has the advantage of making simple and
definite predictions, However from our point of view there are two
unsatisfactory features. The first is the existence of negative energy,
which was discussed in § 4.3. The other is the fact that the space-time
is extendible, being only half of de Sitter space. Despite these aesthetic
objections, the real test of the steady state theory is whether its pre-
dictions agree with observations or not. At the moment it seems that
they do not, though the observations are not yet quite coneclusive.

de Sitter space is geodesically complete; however; there are points
in the space which cannot be joined to each other by any geodesic.
This is in contrast to spaces with a positive definite metric, when
geodesic completehess guarantees that any two points of a space can
be joined by at least one geodesic. The half of de Sitter space which
represents the steady state universe is not complete in the past (there
are geodesics which are complete in the full space, and cross the
boundary of the steady state region; they are therefore incomplete in

that region).
To study infinity in de Sitter space~time, we define a time coordinate
' by i' = 2arctan (expa—tt)—ix,
where —im <t < im. (5.8)
. Then ds® = a? cosh? {&—1") . d52,

where d3® is given by (5.7) on identifying +' = y. Thus the de Sitter
space is conformal to that part of the Einstein static universe defined
by (5.8) (see figure 17 (i}). The Penrose diagram of de Sitter space is
accordingly as in figure 17 (ii). One half of this figure gives the Penrose
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(1) De Sitter space—time is conformal to the region —fr < < i of the
Einstein static universe. The steady state universe is conformal to the shaded
region. ' - : ‘

(ii) The Penrose diagram of de Bitter space—tirne.

(iii) The Perirose diagram of the steady state universe.
In (ii), (ili) each point represents a two-sphere of area 2 sin? y; null lines are
at 45°. ¥ = 0 and ' = 7 are identified. : '

diagram of the half of de Sitter space-time which constitutes the
steady-state universe (figure 17 (iii)).

One sees that de Sitter space has, in contrast to Minkowski space,
a spacelike infinity for timelike and null lines, both in the future and
the past. This difference corresponds to the existence in de Sitter
space-time of both particle and event horizons for geodesic families
of observers.

In de Sitter space, consider a family of particles whose histories are
timelike geodesics; these must originate at the spacelike infinity /-

~and end at the spacelike infinity #+. Let p be some event on the world-
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(i} The particle horizon defined by & congruence of geodesic curves when
past null infinity £ is spacelike.
(ii} Lack of such a horizon if #— is null.

line of a particle O in this family, i.e. some time in its history (proper
time measured along O’s world-line). The past null cone of p is the set
of events in space—time which can be observed by O at that time. The
world-lines of some other particles may intersect this null cone; these
particles are visible to 0. However, there can exist particles whose
world-lines do not intersect this null cone, and so are not yet visible
to 0. At a later time O can observe more particles, but there still exist
particles not visible to O at that time. We say that the division of
particles into those seen by O at p and those not seen by O at p, is the
particle horizon for the observer O at the event p; it represents the
history of those particles lying at the limits of (’s vision. Note that it
is determined only when the world-lines of all the particles in the
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family are known. If some particle lies on the horizon, then the event p
;s the event at which the particle’s creation light cone intersects O's

: world-line. In Minkowski space, on the other hand, all the other
-Pa,rticies are vigible at any event p on 0’s world-line if they move on
- gimelike geodesics. As long as one considers only families of geodesic
7 observers, one may think of the existence of the particle horizon as a
" consequence of past null infinity being spacelike (see figure 18).
.+ All events outside the past null cone of p are events which are not,
. and never have been, observable by O up to the time represented by
" the event p. There is a limit to 0’s world-line on #+. In de Sitter space—

time, the past null cone of this point (obtained by a limiting process
in the actual space-time, or directly from the conformal space—time)
is a boundary between events which will at some time be observable
by O, and those that will never be observable by 0. We call this surface
the future event horizon of the world-line. It is the boundary of the past
of the world-line. In Minkowski space-time, on the other hand, the
limiting null cone of any geodesic observer includes the whole of
space—time, so there are no events which a geodesic observer will never
be able to see. However if an observer moves with uniform aceeleration
his world-line may have a future event horizon. One may think of the
existence of a future event horizon for a geodesic observer as being
a consequence of .#+ being spacelike (see figure 19).

Consider the event horizon for the observer O in de Sitter space-time
and suppose that at some proper time (event p) on his world-line, his
light cone intersects the world-line of the particle . Then @ is always
visible to O at times after p. However there is on @’s world-line an
event # which lies on O’s future event horizon; O can never see later
events on (s world-line than . Moreover an infinite proper time
elapses on O’s world-line from any given point till he observes r, but

a finite proper time elapses along @’s world-line from any given event

to 7, which is & perfectly ordinary event on his world-line. Thus O sees
a finite part of @’s history in an infinite time; expressed more physi-
cally, as O observes @ he sees a redshift which approaches infinity as
O observes points on @’s world-line which approach r. Correspondingly,
Q never sees beyond some point on O’s world-line, and sees nearby
points on (s world-line only with a very large redshift.

At any point on O’s world-line, the future null cone is the boundary
of the set of events in space—time which O can influence at and after
that time. To obtain the maximal set of events in space-time that O
could at any time influence, we take the future light cone of the limit
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point of (s world-line on past infinity #—; that is, we take the
boundary of the future of the world-line (which ecan be regarded as
O’s creation light cone). This has a non-trivial existence for a geodesie
observer only if the past infinity #— is spacelike (and is in fact then
O’s past event horizon). It is clear from the above discussion that
in the steady state universe, which has a null past infinity for timelike
and null geodesics and a spacelike future infinity, any fundamental
observer has a future event horizon but no past particle horizon. .
One can obtain other spaces which are locally’ equivalent to the de
Sitter space, by identifying points in de Sitter space. The simplest such
identification is to identify antipodal points p, »’ (see figure 16) on the
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-/ hyperboloid. The resulting spaceisnot time orientable; if timeincreases

" in the direction of the arrow at p, the antipodal identification implies
i must increase in the direction of the arrow at »’, but one cannot
S continuously extend this identification of future and past half null
.. cones over the whole hyperboloid. Calabi and Markus (1962) have

studied in detail the spaces resulting from such identifications; they

- ~ ghow in particular that an arbitrary pomt in the resulting space can

be joined to any other point by a geodesm if and only if it is not time
orientable.

The space of constant cu;'va,tulje with B < 0 is called anti-de Sitter
space. It has the topology 8'x B3, and can be represented as the
hyperboloid WP ottt = 1
in the flat five-dimensional space R® with metric

ds? = — (du)® — (dv)®+ (dw)? + (dy)2 + (dz)®.

There are closed timelike lines in this space; however it is not simply
connected, and if one unwraps the circle 81 (to obtain its covering
space R!) one obtains the universal covering space of anti-de Sitter
space which does not contain any closed timelike lines. This has the
topology of R%. We shall in future mean by ‘anti-de Sitter spa.ce this
universal covering space.

~ It can be represented by the metric

ds? = —df2 + cos?t{dy? +sinh? y(d6>+sin? 0 dg?)}.  (5.9)

This coordinate system covers only part of the space, and has apparent
singularities at { = + 377. The whole space can be covered by coordi-
nates {#, 7,8, ¢} for which the metric has the static form

ds? = — cosh?r dt’? + dr2 + sinh? r(d6*+ sin® 6 d¢H?).

In this form, the space is covered by the surfaces {f' = constant} Which
have non-geodesic normals.
"To study the structure at infinity, define the coordinate +* by

P = 2arctan (expr)—1m, 0< ¢ < im

Then one finds ds? = cosh®r ds?, where d3? is given by (5.7); that is,
the whole of anti-de Sitter space is conformal to theregion 0 < ¢’ < 37
of the Eingstein static cylinder. The Penrose diagram is shown in
figure 20; null and spacelike infinity can be thought of as a tlmehke
surface in this case. This surface has the topology B! x 8%,
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(i} Universal anti-de Sitter space is conformal to one half of the Finstein
static universe. While coordinates (¢, #, 8, ¢} cover the whole gpace, coordinates
{t, x, 8, $) cover only one diamond-shaped region as shown. The geodesics
orthogonal to the surfaces {f = constant} all converge at p and ¢, and then
diverge out into similar diamond-shaped regions.

(it) The Penrose diagram of universal anti-de Sitter space. Infinity consists of
the timelike surface ./ and the disjoint points i+, #~. The projection of some
timelike and aull geodesics is shown. o ' B
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. One cannot find a conformal transformation which makes timelike
infinity finite without pinching off the Einstein static universe to a

©. point (if a conformal transformation makes the time coordinate finite

it also scales the space sections by an infinite factor), so we represent

. _timelike infinity by the disjoint points i+, i~.

The lines {y,6,¢ constant} are the geodesics orthogonal to the
surfaces {t = constant}; they all converge to points g (respectively, p)
in the future (respectively, past) of the surface, and this convergence
is the reason for the apparent (coordinate) singularities in the original

.- metric form. The region covered by these coordinates is the region

between the surface ¢ = 0 and the nuil surfaces on which these normals
become degenerate.

The space has two further interesting properties. First, as a con-
sequence of the timelike infinity, there exists no Cauchy surface
whatever in the space. While one can find families of spacelike
surfaces (such as the surfaces {f’ = constant}) which cover the space
completely, each surface being a complete cross-section of the space—
time, one can find null geodesics which never intersect any given
surface in the family, Given initial data on any such surface, one
cannot predict beyond the Cauchy development of the surface; thus
from the surface {t = 0}, one can predict only in the region covered by
the coordinates , ¥, 0, ¢. Any attempt to predict beyond this region is

~ prevented by fresh information coming in from the timelike infinity.

Secondly, corresponding to the fact that the geodesic normals from
t = 0 all converge at p and g, all the past timelike geodesics from p
expand out (normal to the surfaces {t = constant}) and reconverge
at ¢. In fact, all the timelike geodesics from any point in this space
(to either the past or future) reconverge to an image point, diverging
again from this image point to refocus at a second image point, and
so0 on. The future timelike geodesics from p therefore never reach .#,in
contrast to the future null geodesics which go to £ from p and form the
boundary of the future of p. This separation of timelike and null
geodesicé results in the existence of regions in the future of p (i.e. which
can be reached from p by a future-directed timelike Iine)} which cannot
be reached from p by any geodesic. The set of points which can be
reached by future-directed timelike lines from p is the set of points
lying beyond the future null cone of p; the set of points which can be
reached from p by future-directed timelike geodesics is the interior of
the infinite chain of diamond-shaped regions similar to that covered
by coordinates (¢, .0, $). One notes that all pomnts in the Cauchy
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development of the surface { = 0 can be reached from this surface by
a unique geodesic normal to this surface, but that a general point
outside this Cauchy development cannot be reached by any geodesic
normal to the surface.

5.3 Robertson-Walker spaces

So far, we have not considered the relation of exact solutions to the
physical universe. Following Einstein, we can ask: can one find space~
times which are exact solutions for some suitable form of matter and
which give a good representation of the large scale properties of the
observable universe? If so, we can claim to have a reasonable ‘ cosmo-
logical model’ or model of the physical universe.

However we are not able to make cosmological models without some
admixture of ideology. In the earliest cosmologies, man placed himself
in a commanding position at the centre of the universe. Since the time
of Copernicus we have been steadily demoted to 2 medium sized planet
going round a medium sized star on the outer edge of a fairly average
galaxy, which is itself simply one of a local group of galaxies. Indeed
we are now 50 democratic that we would not claim that our position in
space is specially distinguished in any way. We shall, following Bondi
(1960), call this assumption the Copernican principle.

A reasonable interpretation of this somewhat vague principle is to
understand it as implying that, when viewed on a suitable scale, the
universe is approximately spatially homogeneous.

By spatially homogeneous, we mean there is a group of isometries
which acts freely on .#, and whose surfaces of transitivity are space-
like three-surfaces; in other words, any point on one of these surfaces
is equivalent to any other point on the same surface. Of course, the
universe is not exactly spatially homogeneous; there are local irregu-
larities, such as stars and galaxies. Nevertheless it might seem reason-
able to suppose that the universe is spatially homogeneous on a Jarge
enough scale.

While one can build mathematical models fulfilling this requirement
of homogeneity (see next section), it is difficult to test homogeneity
directly by observation, as there is no simple way of measuring the
separation between us and distant objects. This difficulty is eased by
the fact that we can, in principle, fairly easily observe isofropies in
extragalactic observations (i.e. we can see if these observations are the
same in different directi\ons, or not), and isotropies are closely con-




