
Physics 581, Quantum Optics II 
Problem Set #3 

Due: Thursday March 5, 2020 
 
 

Problem 1: Some more boson Algebra (20 Points ) 
 
(a) Show that the displacement operators are orthogonal according to the Hilbert-Schmidt 
inner product, .   

Hint: Recall   

 
(b) We have shown that the Fourier transform of the displacement operators are 
 

. 

Show that  (Hint: Insert 
 
appropriately)  

 
(c) Show that for a pure state , the Wigner function is 

 

 , where  . 

 
(d) Show that the Wigner function yields the correct marginals in X and P, 
 

  , 

and for an arbitrary quadrature 
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Problem 2:  Calculation of some quasiprobability functions (25 points) 
 
(a) Find the P. Q, and W distributions for a thermal state  

, = partition function 

 and show they are Gaussian functions.  For example, you should find 

. Show that these three distributions give the proper functions in 

the limit, , i.e. the vacuum. 
 
(b) Find the P. Q, and W distributions squeezed state .  In what sense 
is this state nonclassical? 
 
(c) Find the Glauber-Sudharshan P-representation for a Fock state .  Comment. 
  
(d) Consider a superposition state of two “macroscopically” distinguishable coherent 
states, 

, , where  is normalization. 

This state is often referred to as a “Schrodinger cat”, and is very nonclassical.  Calculate 
the Wigner function, for the case  , with a real, and plot it for different 
values of .  Comment please.  
 
(e) Calculate the marginals of the Schrödinger-cat Wigner function in X and P and show 
they are what you expect. 
 
Problem 3:  An Alternative Representation of the Wigner Function. (20 points) 
 
We have shown that Wigner function could be expressed as 
 

, where   

 
(a) Show that . 
 
(b) Show that .  (This is a tough problem.  You may assume the answer 
and work backwards or try to find a direct proof). 
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Note: the operator  is the “parity operator” (+1 for 

even parity, -1 for odd parity).  Thus we see that the Wigner function at the origin is 
given by the expected value of the parity. 
 

. 

 
(c) Show that general expression 
 

, 

 

and thus . 

 
This expression provides a way to “measure” the Wigner function.  One displaces the 
state to the point of interest, , one then measures the photon statistics 

.  Putting this in the parity sum gives  at that point! 
 
This is a form a quantum-state reconstruction, also know as “quantum tomography.”  
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†â⎡⎣ ⎤⎦ =
2
π

(−1)n
n
∑ n ρ̂ n

T̂ (α ) = 2D̂(α )(−1)â
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