
Physics 581, Quantum Optics II 
Problem Set #2 

Due: Thurs. February 20, 2020 
 
Problem 1: Parametric resonance (20 points) 
Optical parametric amplification that we will study later in the context of three-wave 
mixing in nonlinear optics is a general phenomenon in nonlinear dynamics know as 
parametric resonance, which leads to squeezing.  We study the basic problem here. 
     Consider an oscillator with a time-dependent frequency .  For example, 

consider a pendulum whose length is periodically modulated 
 

 
 

When  the pendulum oscillations satisfy the Mathieu equation 

, where   and   

There is no general analytic solution to this problem.  We can, however, solve this 
approximately.  Our goal is to show that there a nonlinear resonance, at which point we 
exponential pump energy into the system.  
 
(a) Write the general solution as .  For weak driving take . 

 
Show that 

. 

 
(b) This equation shows “parametric resonance” when  (the term “parametric” 

comes from the idea that we were modulating a parameter in the original oscillator).    
Ignoring the rapidly oscillating term, show that at parametric resonance, the equation of 
motion can be written in the form, 
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, where  is real.  Find the constants and .  Show that the solution is 

 where  . 

 
We are all familiar with this phenomenon.  As a child on a swing, we pump our legs back 
and forth, effectively increasing or decreasing the length of the pendulum. If we pump at 
twice the natural frequency we amplify our motion, but only if we pump at the right 
phase!  In nonlinear optics, the pump laser effectively changes the optical path length of 
the signal and can thus parametrically amplify the signal. 
 
(c) Parametric resonance leads to phase-sensitive amplification.  Consider a classical 
statistical distribution of initial complex amplitudes.  
 

 
 For the conditions such that , sketch the resulting output distribution.  Comment. 
 
Problem 2:  Twin beams and two-mode squeezed states.  (20 points) 
Considering the Hamiltonian  
 

, 

 
where  are annihilation operators for two modes with frequencies .  We will see in 

class how this arises in nonlinear optics through the process of parametric down-
conversion.  This leads to correlated twin “signal” and “idler” beams as long as the phase 
matching conditions are satisfied, 
 

. 

 
Here G is the coupling constant depending on the nonlinearity, pump amplitude, and 
vacuum mode strength.  The state produced is known as a “two-mode squeezed vacuum 
state”,  , where  is the complex 

squeezing parameter for an interaction time t, . 
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(a)  Show that the generalized Bogoliubov transformations is 
 

. 
 

(b)  Show that the individual modes, , show no squeezing, but that squeezing exists in 
the correlation between the modes.  Hint:  consider quadratures,  
 

 and then . 

 
For the remaining parts, take x real. 
 
(c)  The two-mode squeezed state is an entangled state between the signal and idler as we 
know from the perturbative limit of twin photons.  Show that in the Fock basis 
 

. 

Hint:  Use the “disentangling theorem” (D. R. Traux, Phys. Rev. D 31, 1988 (1985) ): 
 

. 
where  

 
The photons are produced with perfect correlations between the modes.  This is known as 
“number squeezing” in “twin beams. 
 
Problem 3:  Shot-noise and vacuum fluctuations (30 Points) 
Squeezed states are not robust because of photon absorption (loss).  There are many ways 
to understand this.  Squeezing is associated with photon pair-correlations.  Loss will 
randomly remove a photon, and not both in the correlated pair.  The remaining photon 
will then just add shot noise.   Another way to understand this is from the perspective of 
the continuous variables.   
 
Classically, linear loss results in attenuation of the field amplitude , 
where  is the loss coefficient.  We can model this attenuation by a partial transmitting 
beam splitter, with transmission amplitude h .  Quantumly, we cannot make the 
transformation, , because the commutation relations are not preserved.  Stated in 
another way, we cannot attenuate the vacuum fluctuations. 
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(a) Consider a linear transformation between two modes at a beam splitter with 
transmission amplitude  
 

 
 
Show that if the vacuum enters in mode-b, the output quadrature fluctuations in mode-a 
are 

. 

 
Interpret this result and show how squeezing is degraded by photon loss. 
 
(b) Consider now a Mach-Zender interferometer 
 

 
 
 
Show that output photocurrent operator corresponding to the difference of the 
photocounts at the two output ports is 
  

. 

 
(c) If the input signal enters through port-a and vacuum in port-b, then the show the mean 
output signal and fluctuations are 
 

,  
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(d) The mean output signal is what we know as the interference “fringes.”  The 
fluctuations determine the noise.  The term  in  is the contribution of 

the noise from the input signal.  Show that the term  arises solely due to the 
vacuum fluctuations entering from the unused port-b. 
 
(e) In an application such as LIGO, which measures a tiny effect such as a gravity wave, 
we typically operate near a node of the fringe so that we are measuring an effect away 
from zero.  Thus, we set , where  depends on the strength of the 
gravity wave.  In that case, show that the signal-to-noise ratio (SNR) is 
  

. 

 
This is known as the “standard quantum limit” and is limited solely by the vacuum noise 
vacuum noise entering port-b. 
 
(f) The seminal work on C. M. Caves, Phys. Rev. D 23, 1693 (1981), showed that we 
could improve the SNR by injecting squeezed vacuum into the unused port.  Show that 
that in this case, the SNR is 

, 

 
where r is the squeezing parameter.  This is currently be implemented in the latest 
generation of LIGO. 
 
http://www.nature.com/nphoton/journal/v7/n8/full/nphoton.2013.177.html  
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Problem 4:  Squeezing in the Heisenberg Picture (20 Points) 
 
(a) Consider a “pure squeezing” Hamiltonian, .  Show that the 
Heisenberg equations of motion and solutions are 
 

 .  Find . 

 
This is the Bogoliubov transformation, corresponding to parametric amplification. 
Note: , with , and thus . 

 
(b) Now consider a squeezing interaction in the present of a rotation (caused by a phase 
mismatch), .  Find the Heisenberg equations of motion and 

show that the solution is 
 

 

where  are as in part (a) and  . 

 
(c) Show that, as in part (a), in part (b), , with .  This 

is generic result for any Hamiltonian that is quadratic in  (more on this fact to come). 
Using this, show that this interaction leads to squeezing with squeezing parameter 
 

 

 
(d) Show that only when we have perfect phase matching ( ) do we achieve 
exponential growth with time (amplification) of one quadrature and deamplifaction 
(squeezing) of the other. 
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dâ
dt

= −i2κ â†, dâ
†

dt
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