
Poisson Statistics

1 Introduction

In this experiment you will study one of the most important statistical distribution in physics,

the Poisson distribution. It describes the results of experiments where events occur at

random, but at a definite average rate (for example radioactive decays). It is of paramount

importance in all of atomic and subatomic physics, in particular.

2 Structure

You will use the same setup as the electron rest mass experiment. You must become famil-

iar with (and investigate) γ-ray interactions in matter, the Sodium Iodide (NaI ) detector

including the Photomultiplier Tube (PMT), and the Multichannel Analyzer (MCA) Univer-

sal Computer Spectrometer (UCS). See the enclosed handout (in Ref. [2]). The MCA is

a computer-controlled spectrometer (UCS30) that digitizes the pulses in the range (0-10)V

and with risetimes from (0.5-30)µs.

Check the polarity of the high voltage for the PMT provided by the UCS, and do not

exceed the maximum HV indicated on the NaI detector (If in doubt, ask before turning

on the HV.) The PMT output needs to be connected to the MCA input. The raw anode

output of the PMT should be a negative pulse, explain why. Observe the PMT output in an

oscilloscope as you change the HV (gain of the PMT increases with increasing HV - make

sure you understand why).

In the first part of the experiment, no gamma source will be needed as you will simply

measure the background count rate in our NaI detector. You will use our multichannel

analyzer (MCA) in multichannel scaling mode (MCS) instead of pulse height analysis mode

(PHA). In MCS function, the MCA no longer acts as a pulse height selector, but as a

multichannel scaler with each channel acting as an independent scaler. At the start of

operation, the MCA counts the incident pulse signals (regardless of their amplitude) for a

certain dwell time, and stores this number in the first channel. It then jumps to the next
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channel and counts for another dwell time period, after which it jumps to the next channel

and so on. In MCS mode, therefore, the channels represent bins in time. Typical dwell times

will be in the millisecond range.

Suggested starting values : High-voltage bias of 1000V for the NaI, minimum gain (both

fine and coarse) for the preamp/amp /discriminator, and no radioactive source.

Setup the software with 256 channels (Note: this means the computer will effectively

perform this simple counting experiment 256 times for you) and MCS mode of operation

with 1 pass. Make sure the MCS is set to internal with the presets on. And now the important

part: adjust the dwell time such that the average count rate per channel is around 1-2 counts.

Save the resulting spectrum in an ASCII or text file in a folder with your last name(s) in

the computer. Repeat this procedure for two other dwell times such that the average count

rate per channel is around 5 counts and around 10 counts, respectively.

• Discuss the source of these background counts (where does this background come

from?)

Repeat the experiment for a radioactive source, for example Cs137 adjusting the dwell time

to obtain the same average count rates of around 1-2, 5 and 10 counts respectively.

3 Analysis

Plot your three resulting distributions with statistical error bars 1 for the two cases, (a)

background counts in the detector and (b) when using a radioactive source. Use MATLAB.

Notice the significant asymmetry of the distribution for the lowest average count rate (Pois-

son at work!). Calculate and standard deviation of the distribution in each case. How closely

do your results follow the expected Poisson distribution, i.e. that the standard deviation

is equal to the square the mean? Make a quantitative comparison. Also notice how your

highest average count rate case is rather symmetric, i.e. already for an average count rate

of around 10 the Poisson distribution is practically indistinguishable from a Gaussian.

Compare your three count rate distributions with the expected Poisson distributions

graphically with statistical error bars. Calculate the chi square (χ2) per degree of freedom.

You can review the chi-square test in ”Statistical Treatment of Data” under additional

1“The Poisson distribution and statistical uncertainties do not apply solely to experiment where counts

are recorded in unit time intervals. In any experiment in which data are grouped in bins according to some

criterion to form a histogram or frequency plot, the number of events ni in each individual bin will obey

Poisson statistics with a certain mean µi = ni and fluctuate with statistical uncertainties” σi
Poisson for each

time bint (see Chapter 3 [3]).
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resources or in Section 4.3 in Ref. [3]) where

χ2 =
∑
j

[yexp(j)− ytheory(j)]
2

σ2
j

(1)

Discuss the goodness of the assumption ; how well does the experiment approach

the theory? For the highest average count rate case, repeat with a Gaussian distribution.

Provide an explanation for this.

In general, Poisson (P) and Gaussian (G) distributions are not the same. Evaluate the

Gaussian distribution at the same discrete x-values as the ones defined for your Poisson dis-

tribution. Next, normalize both distributions and plot the relative difference of the Poisson

distribution from your data and the Gaussian distribution, i.e. (Poisson-Gaussian)/Poisson,

for the case without a source, only with background counts for the three investigated average

count rate per channel. This quantity is a measure of the asymmetry of the Poisson dis-

tribution around the mean. Compare this difference using your results with the theoretical

prediction for these difference from Ref. [4].

(G− P )

P
≃ δ − δ3/3µ

2µ
(2)

with δ = n−µ where µ and n = 0, 1, 2, ... are the parameters of the Poisson distribution.

Discuss your results.
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